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Setting the stage

• AllReduce is one of the most important MPI collectives 

• AllReduce is a core dependency of iterative solvers
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Operation
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• Reduction with an operator 
• max, min, +, *, etc… 

• Over networked distributed 
memory nodes 
• [2, inf) 

• All processes need the same 
answer
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Constraints
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• Consistent results required 
across executions 

• Consistent results across 
processes 

• Ordering of non-associative 
operators
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Simple Ways
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Linear Reduce & Broadcast  
Time:

Tree Reduce & Broadcast 
Time: 
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Butterfly Pattern

Ti
m
e

Ti
m
e

STA
TE 

OF

THE
 AR

T!

• Pairwise Exchange using Recursive Doubling 

• Time:              , requires  

• There is a fix, but costs 2 stages!



Modelling

Time

• Simple cost model 

• For small messages 

• Latency bound messages
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DMAPP Multicast Sends
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DMAPP Multicast Sends



Modelling

Time

• Pipelining cost model 

• Host only sees partial cost 

• Offloaded to network 

• Results in cheap multicasting
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First Idea
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ePairwise Exchange 

is an All-to-All
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Applied recursively like recursive doubling



Recursive Multiplying Model

limited to powers of
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Second Idea

All-to-All size can 
change
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We have access to composite numbers instead 
of powers only
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Recursive Multiplying

1. Prime factorisation of 
collective size 
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Recursive Multiplying

2. Aggregate factors 

• Optimal multicast usage 

• Dependent only on overlap ratio

• power of 2 restriction -> large prime restriction
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Splitting

• MPICH fix for the non-
power-of-two case 

• Make use of multicasting 

• Generalised version of 
MPICH fix 

• Still requires two additional 
stages
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Merging

• Overlapping multiple 
patterns

4-way 3-way 3-way
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Results
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Results

8%

18%
7.5us

40%

34%
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Summary

Time

• Execution time less than 
recursive doubling consistently 

• Drop in replacement for small 
message recursive doubling 

• More pipelining and bandwidth


