
Martin Rüfenacht, Mark Bull, Stephen Booth

Generalisation of Recursive Doubling
for AllReduce

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Setting the stage

• AllReduce is one of the most important MPI collectives

• AllReduce is a core dependency of iterative solvers

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Operation

+ Ti
m
e

+ Ti
m
e

• Reduction with an operator
• max, min, +, *, etc…

• Over networked distributed
memory nodes
• [2, inf)

• All processes need the same
answer

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Constraints

+ Ti
m
e

• Consistent results required
across executions

• Consistent results across
processes

• Ordering of non-associative
operators

+ Ti
m
e

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Simple Ways

Ti
m
e

Ti
m
e

Linear Reduce & Broadcast
Time:

Tree Reduce & Broadcast
Time:

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Butterfly Pattern

Ti
m
e

Ti
m
e

STA
TE

OF

THE
 AR

T!

• Pairwise Exchange using Recursive Doubling

• Time: , requires

• There is a fix, but costs 2 stages!

Modelling

Time

• Simple cost model

• For small messages

• Latency bound messages

Ti
m
e

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

DMAPP Multicast Sends

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

DMAPP Multicast Sends

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

DMAPP Multicast Sends

Modelling

Time

• Pipelining cost model

• Host only sees partial cost

• Offloaded to network

• Results in cheap multicasting

Ti
m
e

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

First Idea

Ti
m
ePairwise Exchange

is an All-to-All

Ti
m
e

Applied recursively like recursive doubling

Recursive Multiplying Model

limited to powers of

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Second Idea

All-to-All size can
change

Ti
m
e

We have access to composite numbers instead
of powers only

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Recursive Multiplying

1. Prime factorisation of
collective size

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Recursive Multiplying

2. Aggregate factors

• Optimal multicast usage

• Dependent only on overlap ratio

• power of 2 restriction -> large prime restriction

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Splitting

• MPICH fix for the non-
power-of-two case

• Make use of multicasting

• Generalised version of
MPICH fix

• Still requires two additional
stages

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Merging

• Overlapping multiple
patterns

4-way 3-way 3-way

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Results

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Results

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Results

8%

18%
7.5us

40%

34%

• Body Level One
– Body Level Two

• Body Level Three
– Body Level Four

» Body Level Five

Summary

Time

• Execution time less than
recursive doubling consistently

• Drop in replacement for small
message recursive doubling

• More pipelining and bandwidth

