

Generalisation of Recursive Doubling for AllReduce

Martin Rüfenacht, Mark Bull, Stephen Booth

Research Council

EPSRC Centre for Doctoral Training in

vsical Sciences EPCC Pervasive Parallelism informatics

THE UNI

• AllReduce is one of the most important MPI collectives

• AllReduce is a core dependency of iterative solvers

Operation

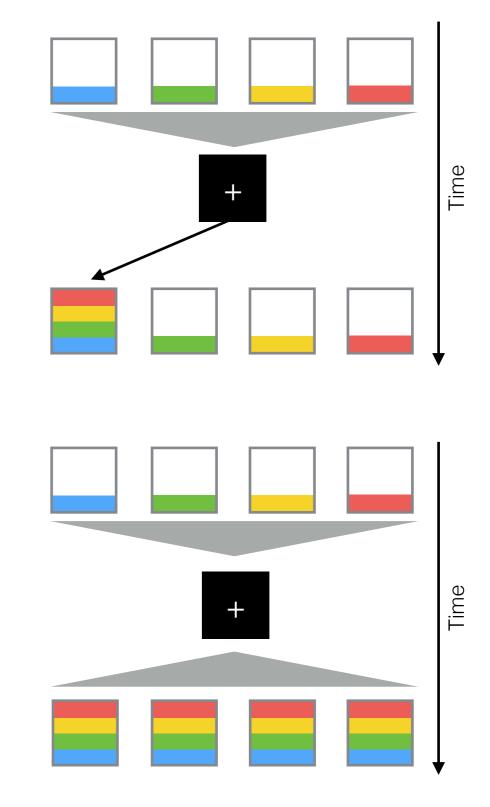
WNIVERSTRAND

HE U

• max, min, +, *, etc...

- Over networked distributed memory nodes
 - [2, inf)

• All processes need the same answer



Constraints

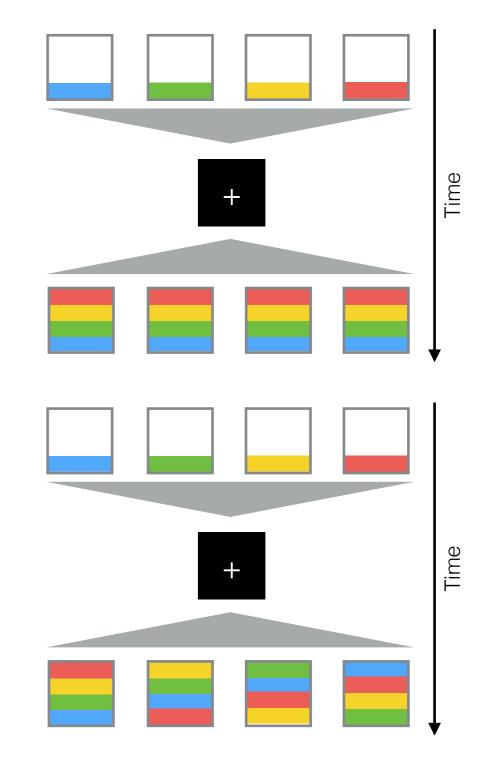
'HE U

 Consistent results required across executions

 Consistent results across processes

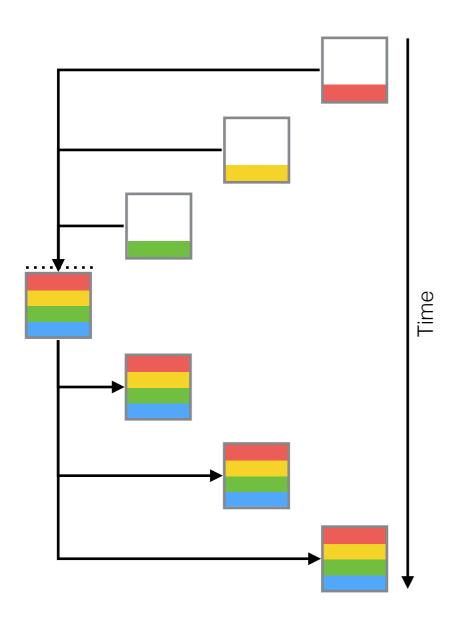
• Ordering of non-associative operators

 $(a+b)+c \neq a+(b+c)$

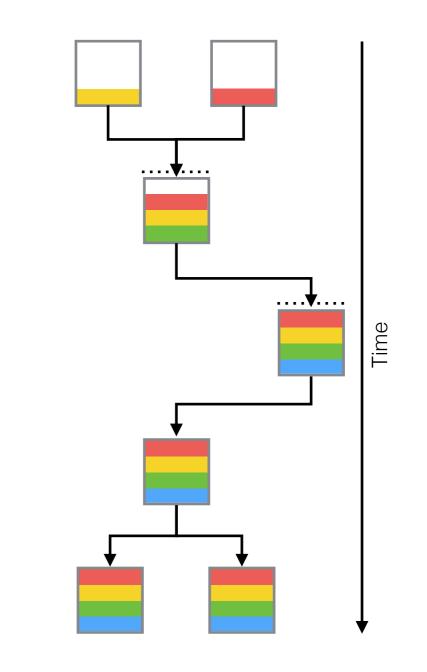


Simple Ways

Linear Reduce & Broadcast Time: O(N)

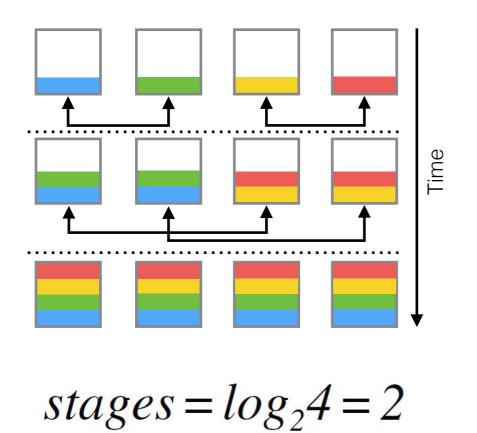


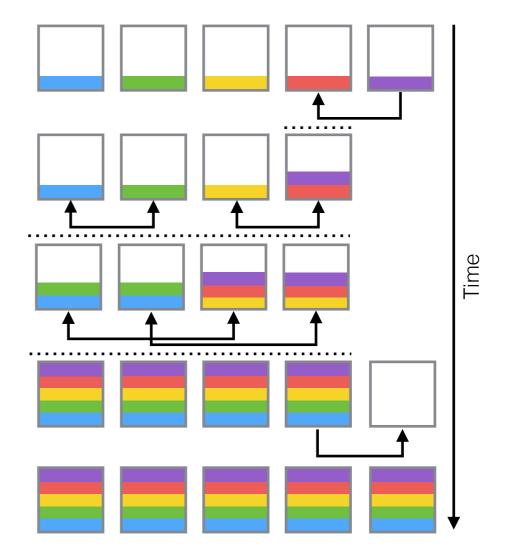
Tree Reduce & Broadcast Time: $2 \times O(\log_2 N)$



Butterfly Pattern

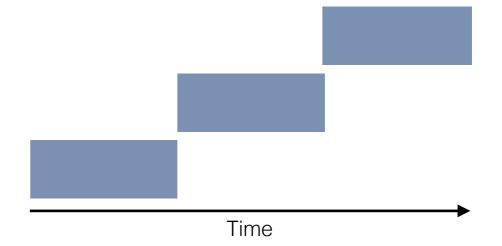
- Pairwise Exchange using Recursive Doubling
 - Time: $O(log_2N)$, requires $N = 2^k$
 - There is a fix, but costs 2 stages!





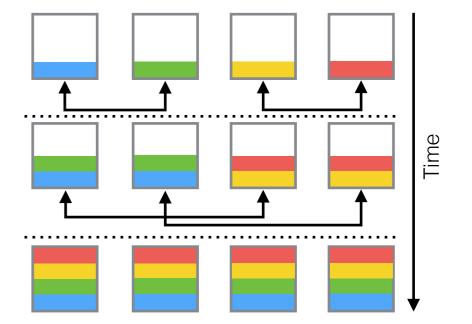
Modelling

- Simple cost model
 - For small messages
 - Latency bound messages



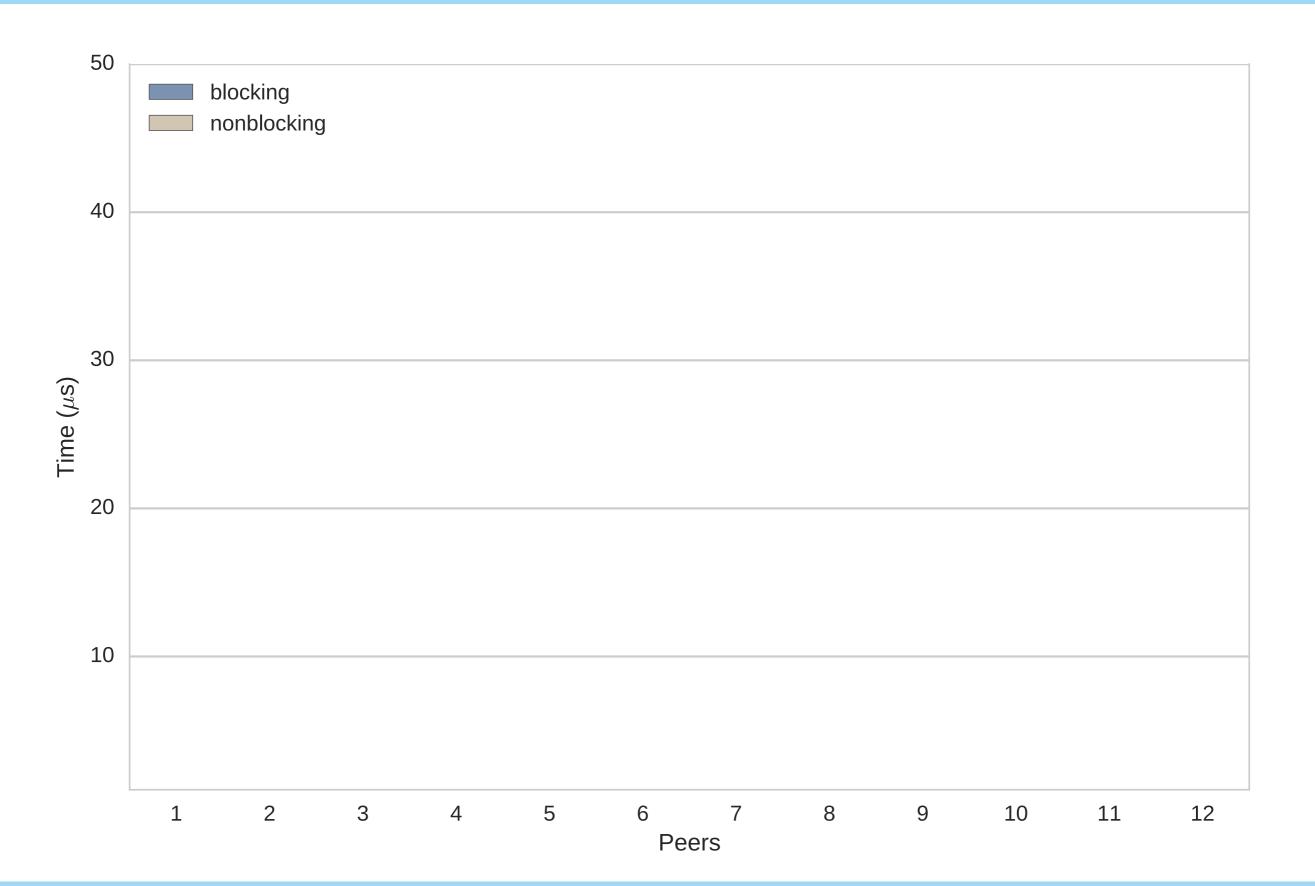
$$\alpha + \beta n + \gamma n = 0$$

$$O(\log_2 N) \rightarrow \alpha \log_2 N$$



DMAPP Multicast Sends

THE UNIVERSITY of EDINBURGH



DMAPP Multicast Sends

<u>THE UNI</u>

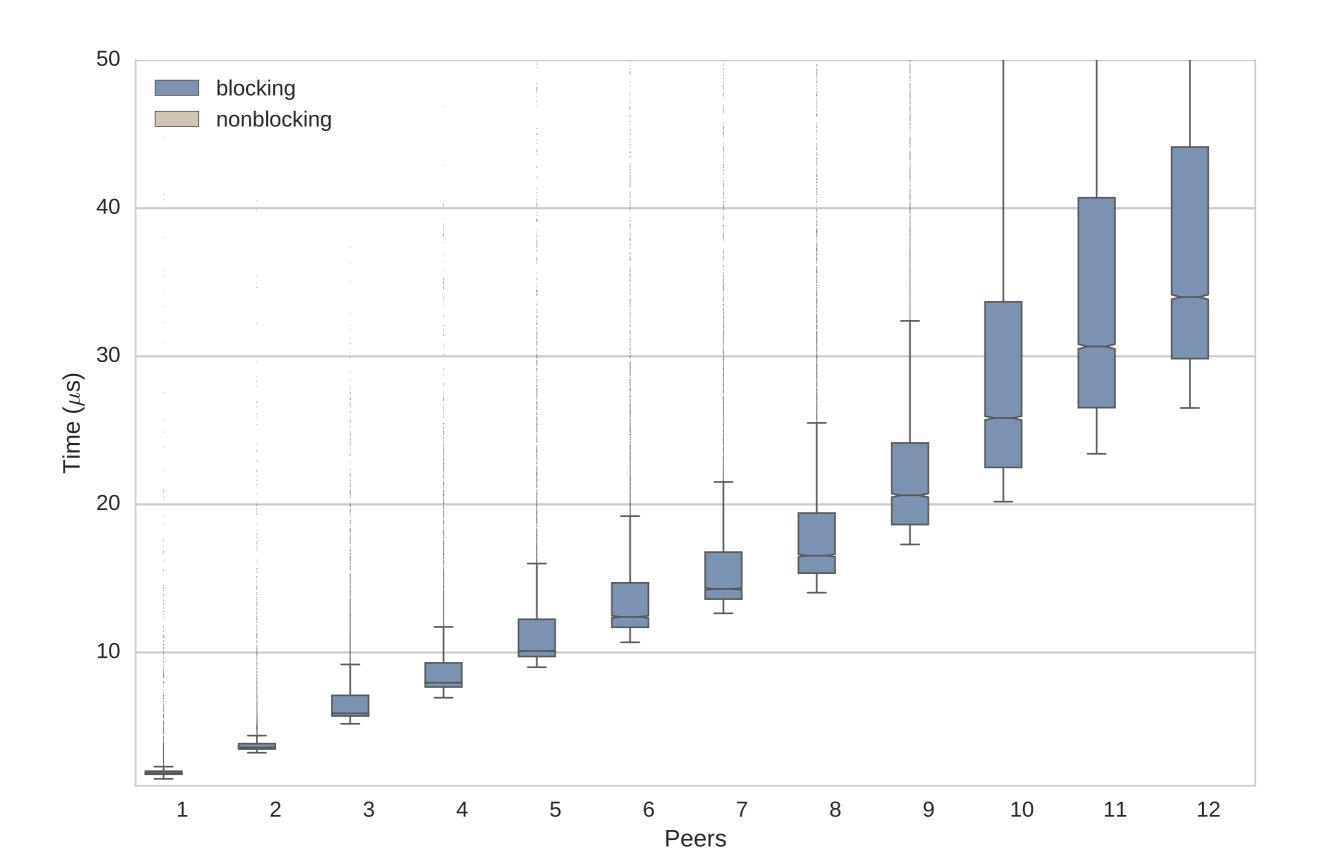
ED

of

SITY

JRGH

Βl



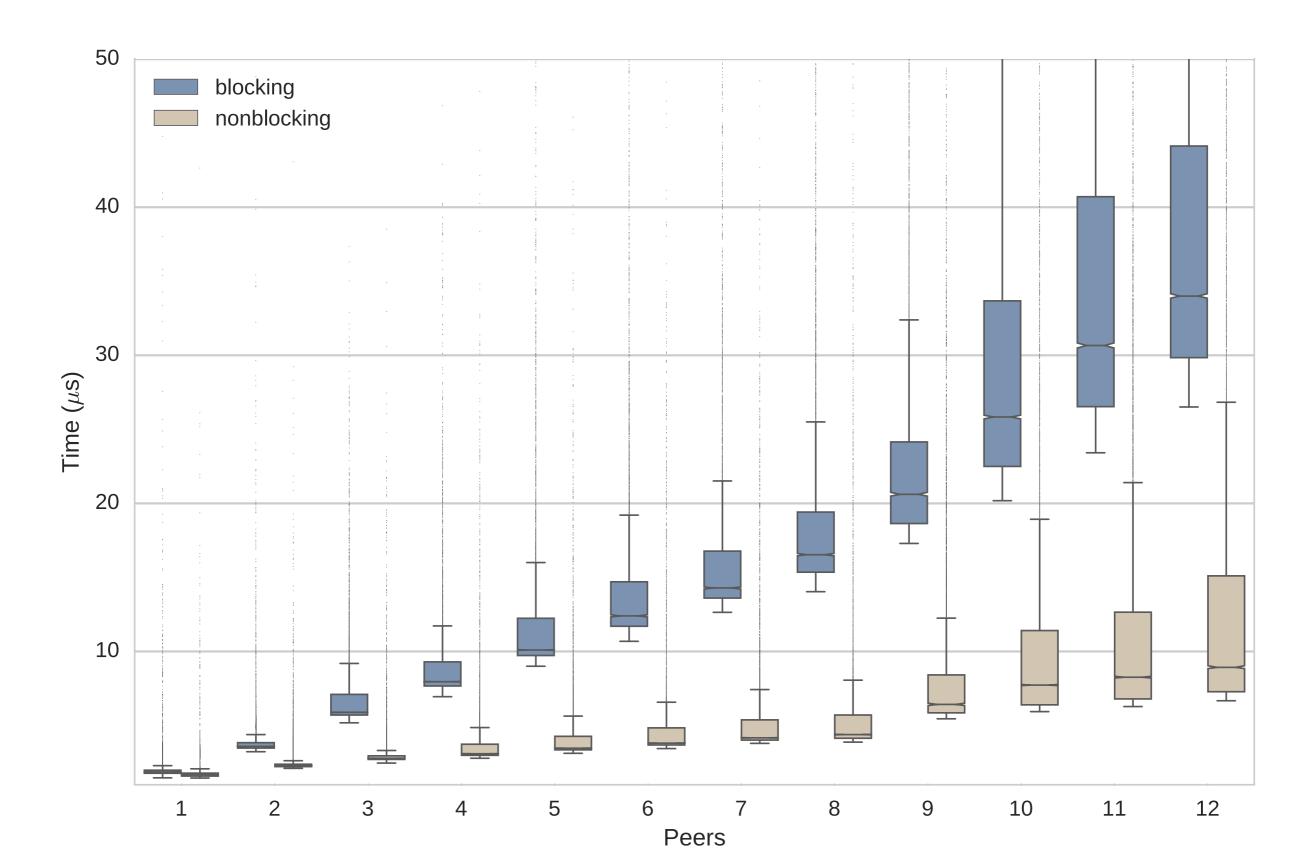
DMAPP Multicast Sends

THE UNIVERSITY

BURGH

EDIN

of

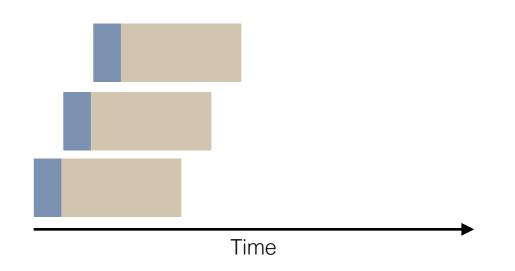


Modelling

Time

- Pipelining cost model
 - Host only sees partial cost
 - Offloaded to network
 - Results in cheap multicasting

$$\alpha = \alpha_p + \alpha_r$$



$$\alpha_p + b(\alpha_r + \beta n + pn) \quad n = 0$$

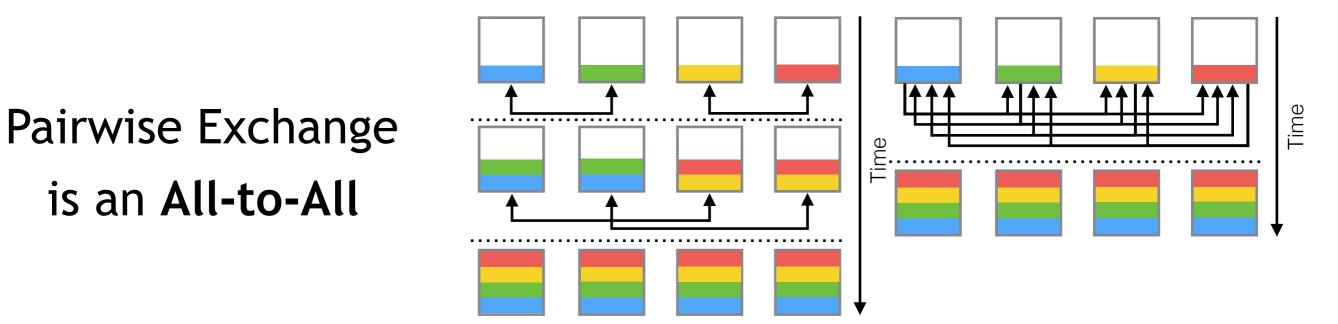
$$(\alpha_p + b\alpha_r) \log_2 N \rightarrow b = 1$$

First Idea

is an All-to-All

HEU

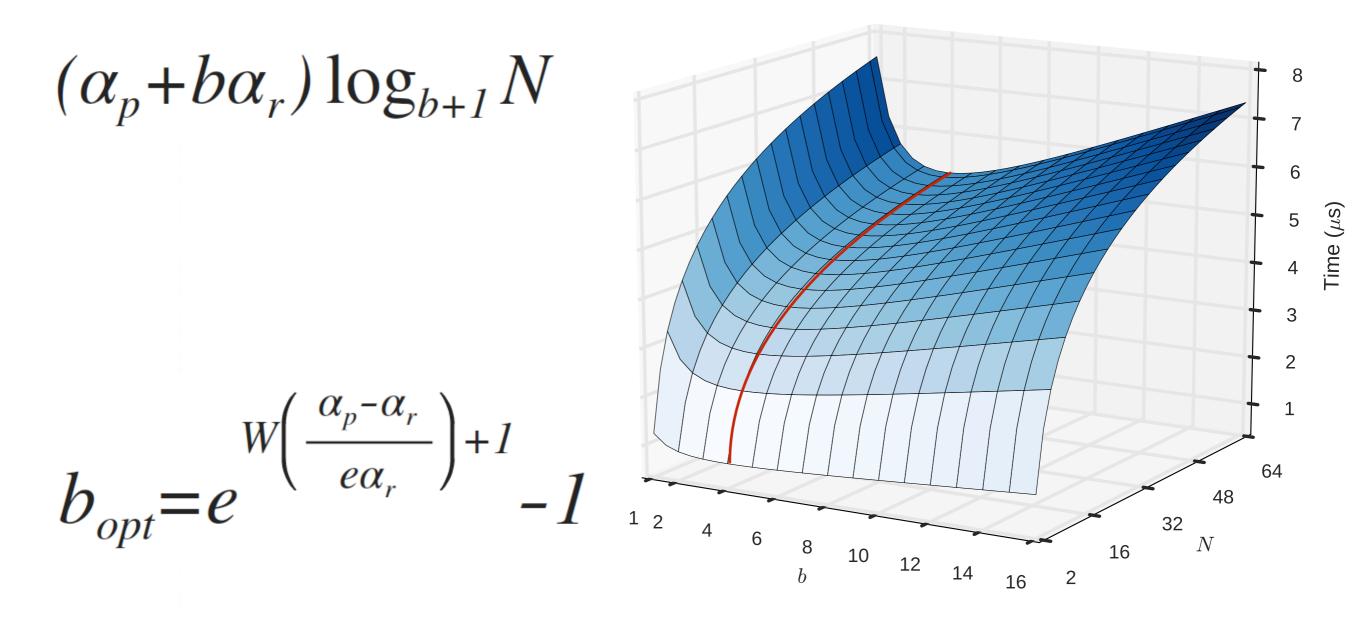
BUKGH



Applied recursively like recursive doubling

$$(\alpha_p + b\alpha_r) \log_2 N \rightarrow (\alpha_p + b\alpha_r) \log_{b+1} N$$

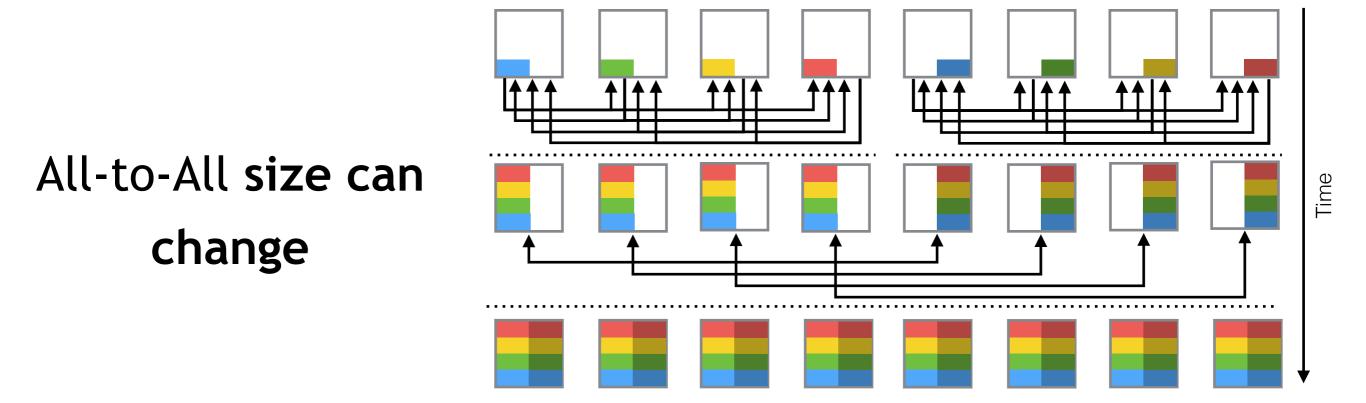
THE UNIVERSITY of EDINBURGH



N limited to powers of b+1

Second Idea

) e de la calactería de la

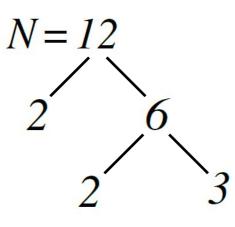


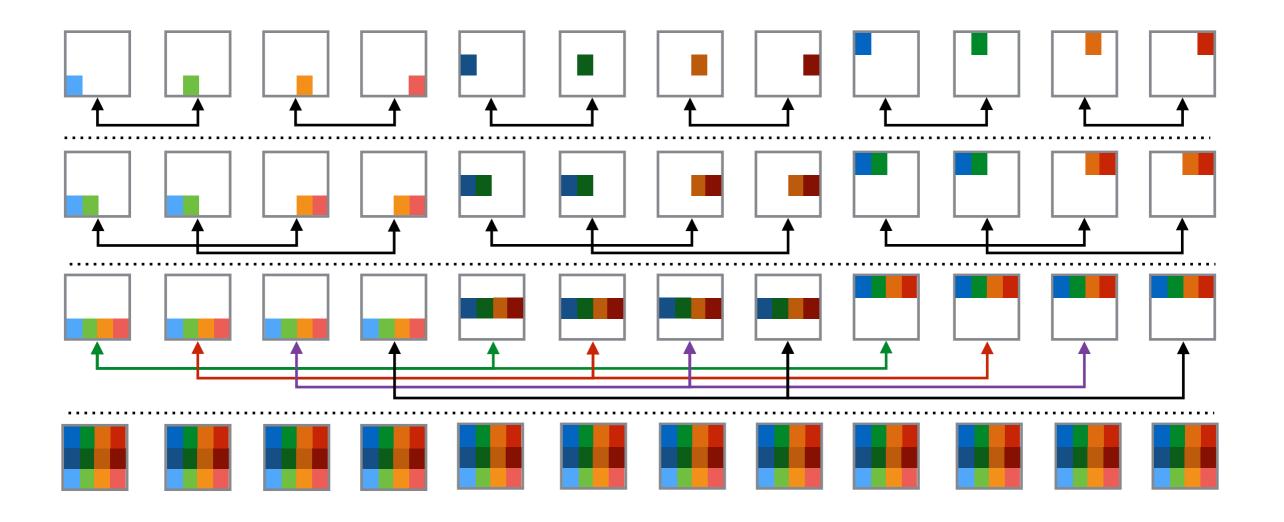
We have access to composite numbers instead of powers only

Recursive Multiplying

01

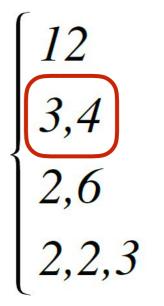
1. Prime factorisation of collective size

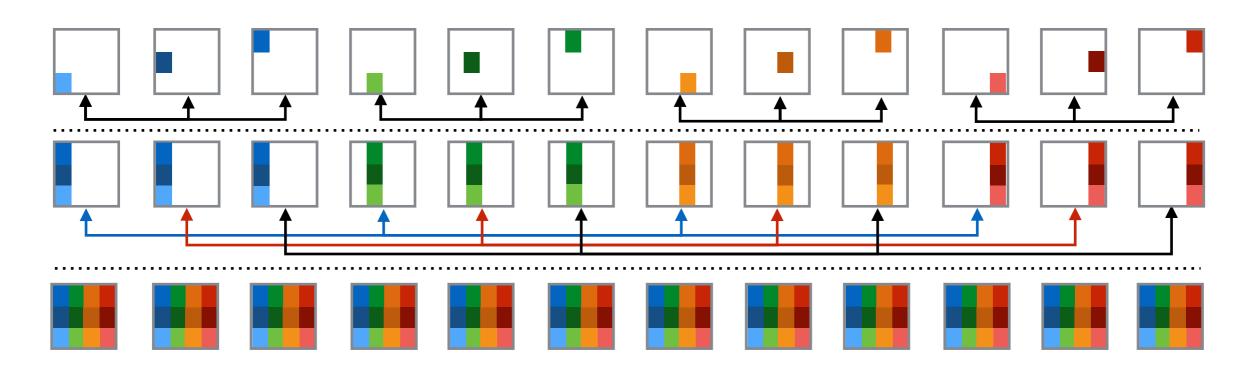




Recursive Multiplying

- 2. Aggregate factors
 - Optimal multicast usage
 - Dependent only on overlap ratio

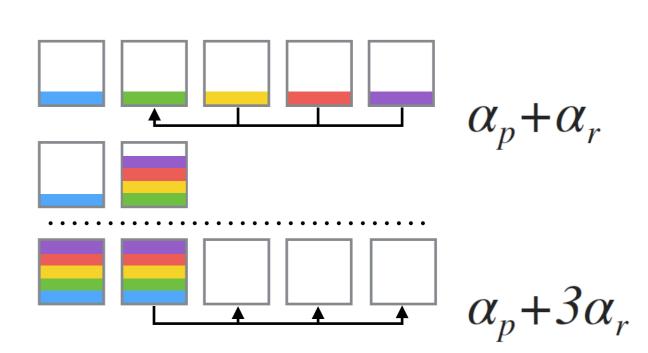


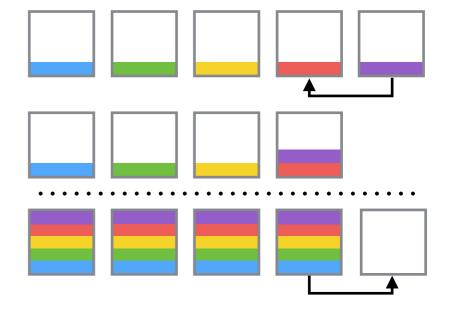


power of 2 restriction -> large prime restriction

Splitting

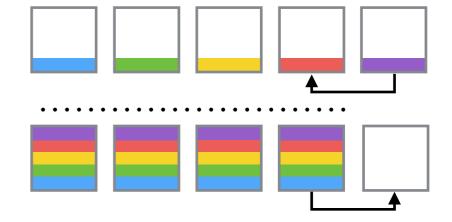
- MPICH fix for the nonpower-of-two case
- Make use of multicasting
- Generalised version of MPICH fix
- Still requires two additional stages



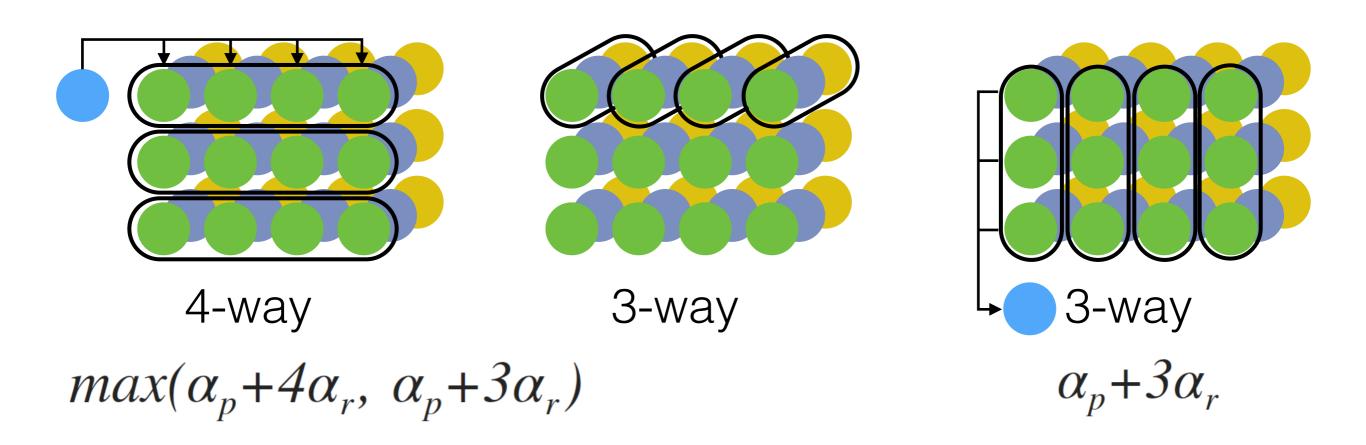


Merging

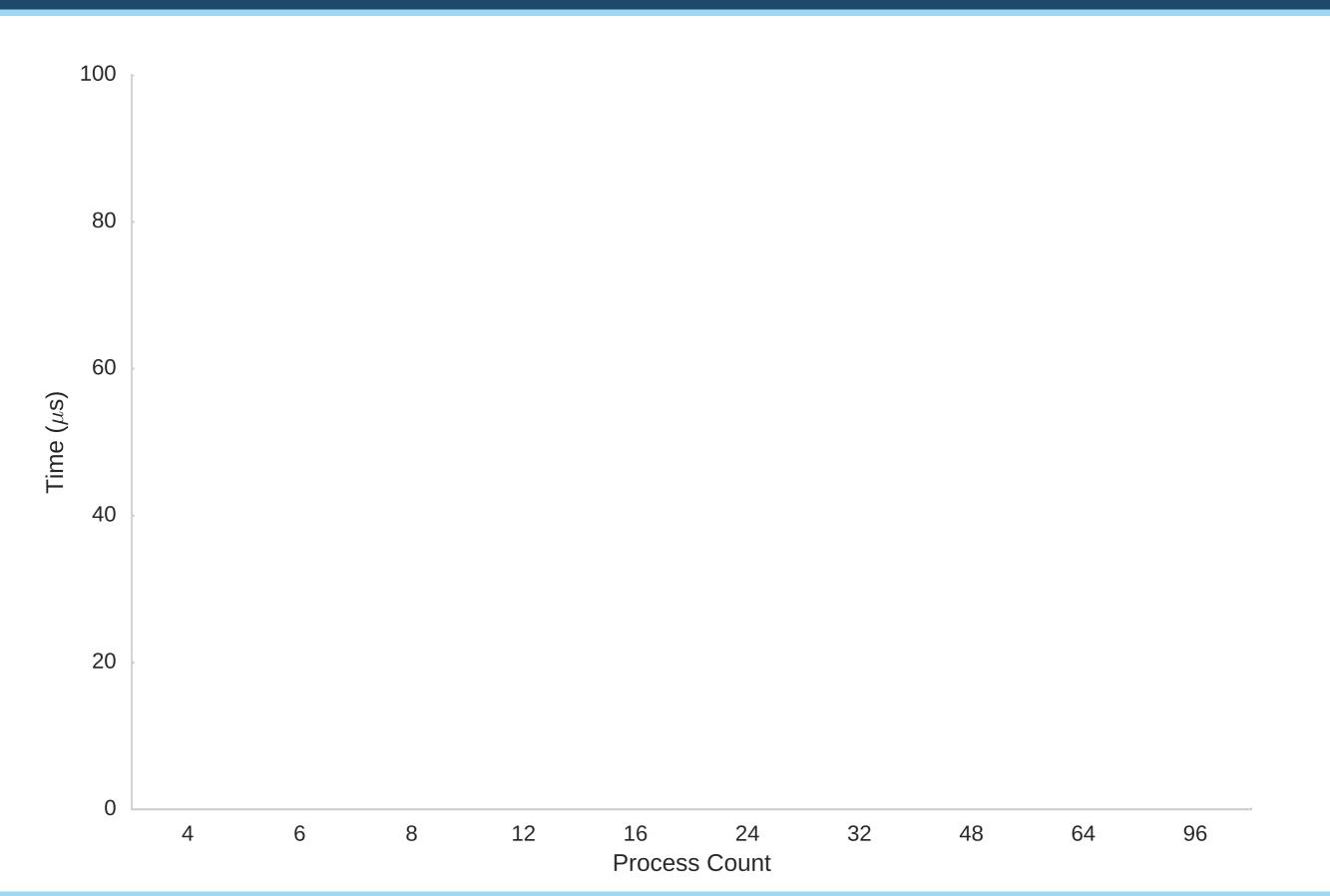
 Overlapping multiple patterns



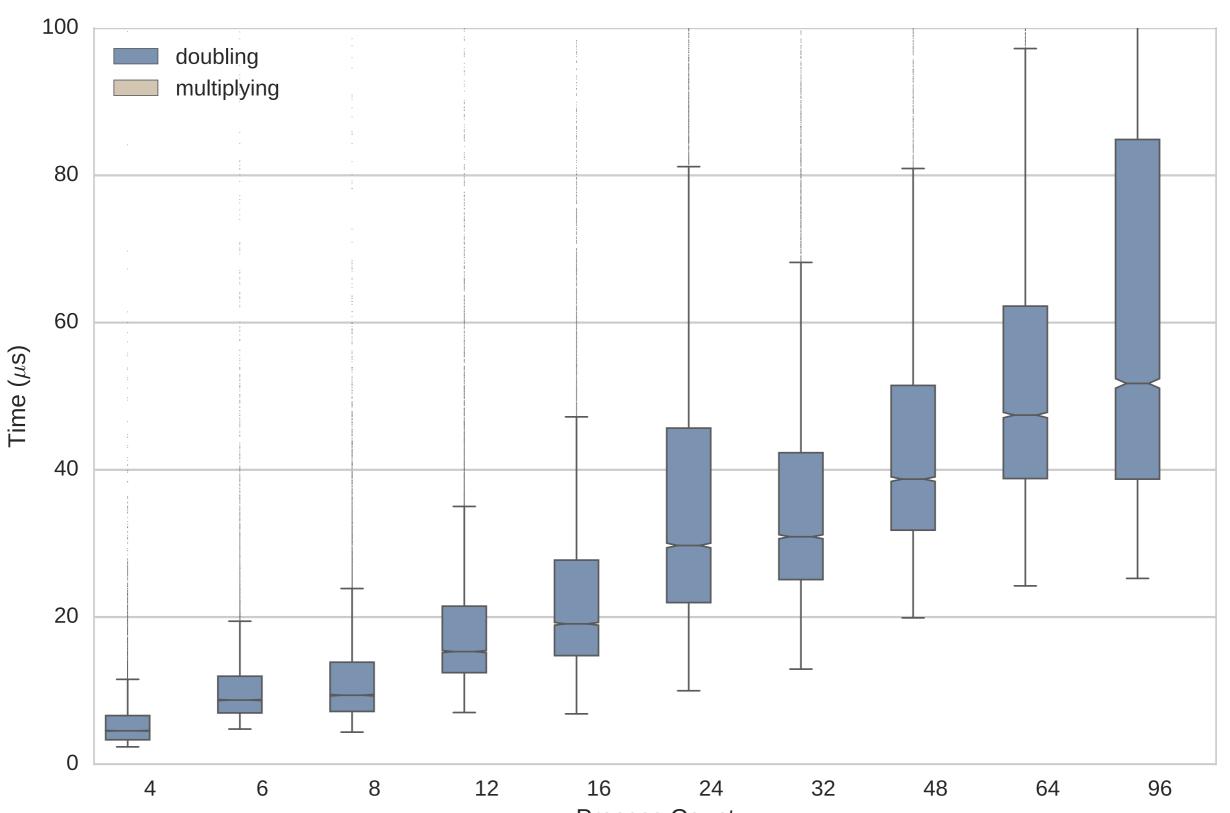
THE UNIVERSITY



Results

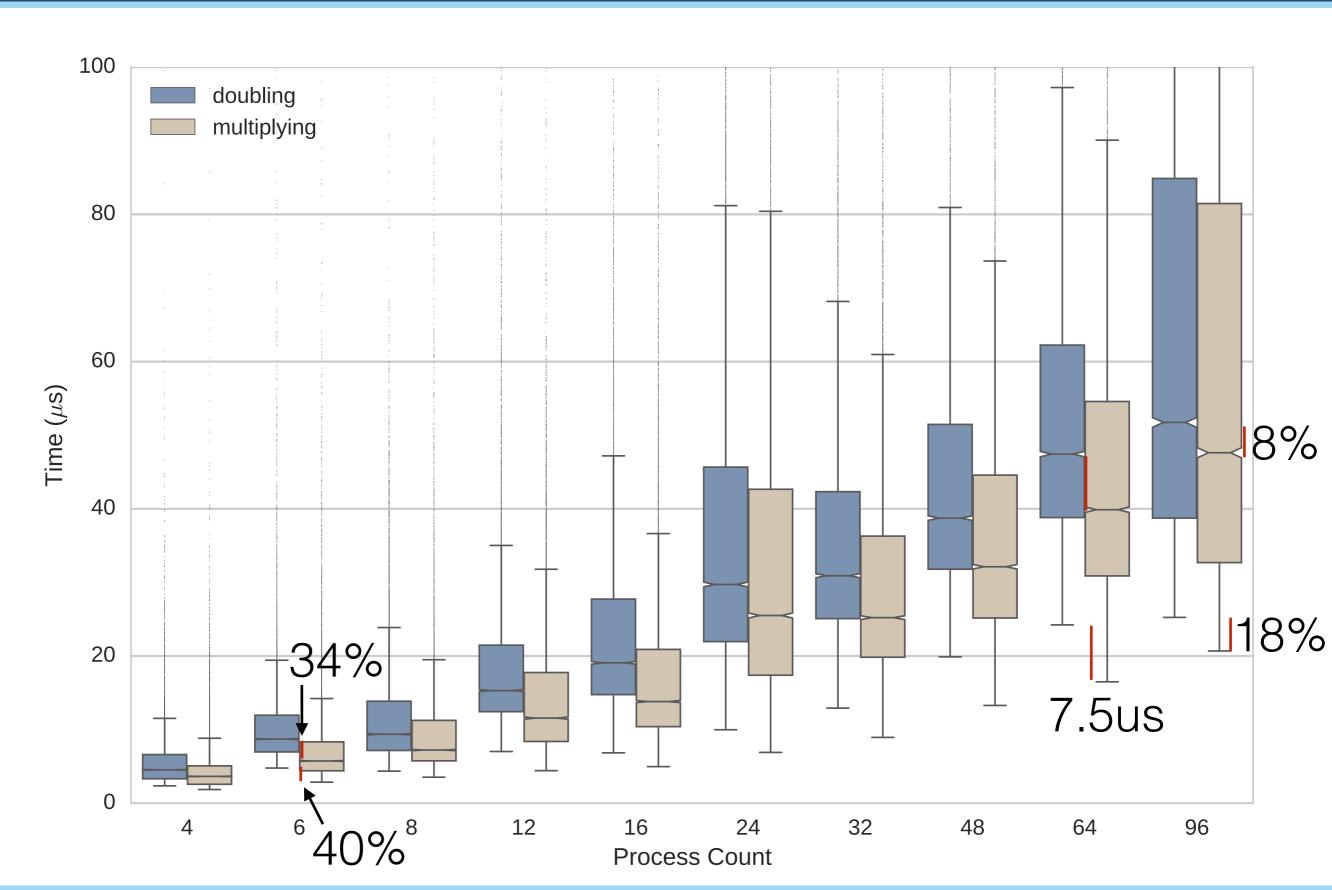


Results



Process Count

Results



• Drop in replacement for small message recursive doubling

• More pipelining and bandwidth

