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Why Analytics?

= Scientific simulations generate terabytes of output data

= Processing allows domain scientists to more easily reason
about simulation results
= Common examples of data analysis

= vyjsualization

= feature extraction

= summary statistics
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Why In Situ Analytics? ) .

= Currently, simulation codes commonly write output data to
shared filesystem. Analysis reads from shared filesystem

= Data movement is expensive (limited I/O bandwidth, energy
costs). Co-locating analysis with simulation eliminates
unnecessary data movement.
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Examples of In Situ Workloads

= Visualization

= Selecting features of the output datathat are necessary to generate
images of simulation for human analysis

= Cosmology

= Using parallel Voronoitesellationto identify clusters and voidsin the
output of N-body simulations

= PreDatA

= Middleware supportingthe deployment of user-specified data
processing(e.g., generating histograms)

= SmartPointer (Bonds)

= Analysis of output generated by molecular dynamics codes. Bonds
uses atom bondinginformation to identify and track cracks.
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Examples of In Situ Workloads

= Visualization

= Selecting features of the output datathat are necessary to generate
images of simulation for human analysis

= Cosmology

= Using parallel Voronoitesellationto identify clusters and voidsin the
output of N-body simulations

= PreDatA

= Middleware supportingthe deployment of user-specified data
processing(e.g., generating histograms)

= SmartPointer (Bonds)
= Analysis of output generated by molecular dynamics codes. Bonds

uses atom bondinginformation to identify and track cracks.
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Performance Interference

= Alternatives for co-locating analytics with simulation

" TIME-SHARED : analytics and simulationrunning on same processor cores

" SPACE-SHARED : subset of processors dedicated to analytics

= |n this paper, we examine time-shared in situ analytics; look
for our work on space-shared analytics in the future

= |nterrupting the simulation to run analysis may have disastrous
performance consequences (cf. OS noise: Hoefler et al., SC10;
Ferreira et al., SC08)
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In Situ Analytics
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Perfectly Synchronous )
In Situ Analytics (cont’d)
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In Situ Analytics
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In Situ Analytics (cont’d)
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In Situ Analytics (cont’d)
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Collectives: Algorithms vs. Operations

= MPI 3.0 section 5.1

It is dangerous to rely on synchronization side-effects of the collective
operations for program correctness. ... On the other hand, a correct,
portable program must allow for the fact that a collective call may be
synchronizing. Though one cannot rely on any synchronization side-
effect, one must program so as to allow it.

= Therefore, we explicitly
analyze the synchronizing
effects of collective algorithms
rather than collective operations
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Collective Algorithms (.

= Dissemination
(e.g., toimplementMPI Allreduce)

" Binomial tree dispersal/aggregation 3/3\4\%

(e.g., toimplementMPI Bcast/MPI Reduce) e‘ &

= Stencil communication
(e.g., to implementMPI Neighbor alltoall)




Experimental Approach ) .

= Simulate application execution using LogGOPSim (Hoefler et
al., LSAP 2010; see also Levy et al., PMBS 2013)

= Examine five workloads

= LAMMPS

= Molecular dynamics simulation from Sandia National Laboratories. We
used the LAMMPS 2D crack and Lennard-Jones (LJ) potentials.

= CTH

= Application from Sandia National Laboratories for modeling complex
problems that are characterized by large deformations or strong shocks

= HPCCG

= Conjugate gradient solver from the Mantevo suite of mini-applications
= |LULESH

= An application that represents the behavior of a typical hydrocode

24
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Collective Algorithm-induced

Synchronization
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= Microbenchmark that allows us to vary collective frequency
= Dissemination has the greatest synchronizing effect
= More frequent collectives generally result in tighter

synchronization
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Application-level Synchronization
(Dissemination)

= Used simulation to measure the impact of dissemination

algorithm on process synchronization
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= |n most cases, dissemination synchronizes processes to within

10s of milliseconds
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Application-level Synchronization @
(Binomial dispersal)

= Used simulation to measure impact of binomial dispersal
algorithm on process synchronization

= Binomial dispersal has little impact on process
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Synchronizing Analytics ) .

= Even modest synchronization can significantly reduce the
impact of executing analytics
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= Even modest synchronization can significantly reduce the
impact of executing analytics

Application slowdown (%)
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Synchronizing Analytics ) .

= Even modest synchronization can significantly reduce the
impact of executing analytics
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Conclusion ) i,

= Perfectly synchronizing the execution of time-shared analytics
tasks minimizesimpact, but may be expensive to achieve;
executing analytics tasks with no synchronization can have
disastrous performance impacts.

= Some collective algorithms (e.g., dissemination, high-dimension
stencils) have the effect of approximately synchronizing
application execution; others (e.g., binomial
dispersal/aggregation) have little effect on process
synchronization

= Even modest synchronization (e.g., within 10s of milliseconds)
can dramatically reduce the performance degradation caused
by time-shared analytics; expensive synchronization methods
are unnecessary
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Questions?

sllevy@sandia.gov

www.sandia.gov/~sllevy




