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Why	Analytics?
§ Scientific	simulations	generate	terabytes	of	output	data
§ Processing	allows	domain	scientists	to	more	easily	reason	

about	simulation	results
§ Common	examples	of	data	analysis

§ visualization
§ feature	extraction
§ summary	statistics



§ Currently,	simulation	codes	commonly	write	output	data	to	
shared	filesystem.		Analysis	reads	from	shared	filesystem

§ Data	movement	is	expensive	(limited	I/O	bandwidth,	energy	
costs).		Co-locating	analysis	with	simulation	eliminates	
unnecessary	data	movement.
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Examples	of	In	Situ Workloads
§ Visualization

§ Selecting	features	of	the	output	data	that	are	necessary	to	generate	
images	of	simulation	for	human	analysis

§ Cosmology
§ Using	parallel	Voronoi tesellation to	identify	clusters	and	voids	in	the	

output	of	N-body	simulations

§ PreDatA
§ Middleware	supporting	the	deployment	of	user-specified	data	

processing	(e.g.,	generating	histograms)

§ SmartPointer (Bonds)
§ Analysis	of	output	generated	by	molecular	dynamics	codes.		Bonds	

uses	atom	bonding	information	to	identify	and	track	cracks.
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In	Situ	Analytics	&	
Performance	Interference
§ Alternatives	for	co-locating	analytics	with	simulation

§ TIME-SHARED :	analytics	and	simulation	running	on	same	processor	cores
§ SPACE-SHARED :	subset	of	processors	dedicated	to	analytics

§ In	this	paper,	we	examine	time-shared	in	situ	analytics;	look	
for	our	work	on	space-shared	analytics	in	the	future

§ Interrupting	the	simulation	to	run	analysis	may	have	disastrous	
performance	consequences	(cf.	OS	noise:	Hoefler et	al.,	SC10;	
Ferreira	et	al.,	SC08)
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In	Situ	Analytics	
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Perfectly	Synchronous
In	Situ	Analytics	(cont’d)
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Completely	Asynchronous	
In	Situ	Analytics	(cont’d)



Completely	Asynchronous	
In	Situ	Analytics	(cont’d)

Can we strike a balance between the high 
cost of “perfectly synchronous” and the 
negative performance implications of 

“completely asynchronous”?



Collectives:	Algorithms	vs.	Operations

§ MPI	3.0	section	5.1
It	is	dangerous	to	rely	on	synchronization	side-effects	of	the	collective	
operations	for	program	correctness.	…	On	the	other	hand,	a	correct,	
portable	program	must	allow	for	the	fact	that	a	collective	call	may	be	
synchronizing.		Though	one	cannot	rely	on	any	synchronization	side-
effect,	one	must	program	so	as	to	allow	it.

§ Therefore,	we	explicitly	
analyze	the	synchronizing	
effects	of	collective	algorithms
rather	than	collective	operations
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§ Dissemination	
(e.g.,	to	implement	MPI_Allreduce)

§ Binomial	tree	dispersal/aggregation	
(e.g.,	to	implement	MPI_Bcast/MPI_Reduce)

§ Stencil	communication
(e.g.,	to	implement	MPI_Neighbor_alltoall)

Collective	Algorithms
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Experimental	Approach

§ Simulate	application	execution	using	LogGOPSim (Hoefler et	
al.,	LSAP	2010;	see	also	Levy	et	al.,	PMBS	2013)

§ Examine	five	workloads
§ LAMMPS

§ Molecular	dynamics	simulation	 from	Sandia	National	Laboratories.	We	
used	the	LAMMPS	2D	crack	and	Lennard-Jones	(LJ)	potentials.	

§ CTH
§ Application	 from	Sandia	National	Laboratories	for	modeling	 complex	
problems	 that	are	characterized	by	large	deformations	 or	strong	shocks	

§ HPCCG
§ Conjugate	gradient	solver	from	the	Mantevo suite	of	mini-applications

§ LULESH
§ An	application	that	represents	the	behavior	of	a	typical	hydrocode
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Collective	Algorithm-induced	
Synchronization
§ Microbenchmark that	allows	us	to	vary	collective	frequency
§ Dissemination	has	the	greatest	synchronizing	effect
§ More	frequent	collectives	generally	result	in	tighter	

synchronization	
§ Microbenchmark that	allows	us	to	vary	collective	frequency

2550 millisecond collective period 5 second collective period



Application-level	Synchronization
(Dissemination)
§ Used	simulation	to	measure	the	impact	of	dissemination	

algorithm	on	process	synchronization
§ In	most	cases,	dissemination	synchronizes	processes	to	within	

10s	of	milliseconds

26CTH-st LULESHHPCCG



Application-level	Synchronization
(Binomial	dispersal)
§ Used	simulation	to	measure	impact	of	binomial	dispersal	

algorithm	on	process	synchronization
§ Binomial	dispersal	has	little	impact	on	process	

synchronization

27CTH-st LAMMPS-ljLAMMPS-crack



Synchronizing	Analytics
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§ Even	modest	synchronization	can	significantly	reduce	the	
impact	of	executing	analytics
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Conclusion

§ Perfectly	synchronizing	the	execution	of	time-shared	analytics	
tasks	minimizes	impact,	but	may	be	expensive	to	achieve;	
executing	analytics	tasks	with	no	synchronization	can	have	
disastrous	performance	impacts.

§ Some	collective	algorithms	(e.g.,	dissemination,	high-dimension	
stencils)	have	the	effect	of	approximately	synchronizing	
application	execution;	others	(e.g.,	binomial	
dispersal/aggregation)	have	little	effect	on	process	
synchronization

§ Even	modest	synchronization	(e.g.,	within	10s	of	milliseconds)	
can	dramatically	reduce	the	performance	degradation	caused	
by	time-shared	analytics;	expensive	synchronization	methods	
are	unnecessary
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