
Photos placed in 
horizontal position 
with even amount 

of white space
between photos 

and header

Photos placed in horizontal 
position 

with even amount of white 
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

How	I	Learned	to	Stop	
Worrying	and	Love	
In	Situ	Analytics

Leveraging	Latent	Synchronization	
in	MPI	Collective	Algorithms

Scott	Levy,	Kurt	B.	Ferreira,	Patrick	Widener
Center	for	Computing	Research
Sandia	National	Laboratories
Patrick	G.	Bridges,	Oscar	H.	Mondragon
Department	of	Computer	Science
University	of	New	Mexico

1
SAND2016-9184C



Why	Analytics?
§ Scientific	simulations	generate	terabytes	of	output	data
§ Processing	allows	domain	scientists	to	more	easily	reason	

about	simulation	results
§ Common	examples	of	data	analysis

§ visualization
§ feature	extraction
§ summary	statistics



§ Currently,	simulation	codes	commonly	write	output	data	to	
shared	filesystem.		Analysis	reads	from	shared	filesystem

§ Data	movement	is	expensive	(limited	I/O	bandwidth,	energy	
costs).		Co-locating	analysis	with	simulation	eliminates	
unnecessary	data	movement.

Why	In	Situ	Analytics?

simulation

analysis

simulation

CONVENTIONAL IN SITU

analysis



§ Currently,	simulation	codes	commonly	write	output	data	to	
shared	filesystem.		Analysis	reads	from	shared	filesystem

§ Data	movement	is	expensive	(limited	I/O	bandwidth,	energy	
costs).		Co-locating	analysis	with	simulation	eliminates	
unnecessary	data	movement.

Why	In	Situ	Analytics?

simulation

analysis

simulation

CONVENTIONAL IN SITU

analysis



§ Currently,	simulation	codes	commonly	write	output	data	to	
shared	filesystem.		Analysis	reads	from	shared	filesystem

§ Data	movement	is	expensive	(limited	I/O	bandwidth,	energy	
costs).		Co-locating	analysis	with	simulation	eliminates	
unnecessary	data	movement.

Why	In	Situ	Analytics?

simulation

analysis

simulation

CONVENTIONAL IN SITU

analysis



§ Currently,	simulation	codes	commonly	write	output	data	to	
shared	filesystem.		Analysis	reads	from	shared	filesystem

§ Data	movement	is	expensive	(limited	I/O	bandwidth,	energy	
costs).		Co-locating	analysis	with	simulation	eliminates	
unnecessary	data	movement.

Why	In	Situ	Analytics?

simulation

analysis

simulation

CONVENTIONAL IN SITU

analysis



§ Currently,	simulation	codes	commonly	write	output	data	to	
shared	filesystem.		Analysis	reads	from	shared	filesystem

§ Data	movement	is	expensive	(limited	I/O	bandwidth,	energy	
costs).		Co-locating	analysis	with	simulation	eliminates	
unnecessary	data	movement.

Why	In	Situ	Analytics?

simulation

analysis

simulation

CONVENTIONAL IN SITU

analysis



§ Currently,	simulation	codes	commonly	write	output	data	to	
shared	filesystem.		Analysis	reads	from	shared	filesystem

§ Data	movement	is	expensive	(limited	I/O	bandwidth,	energy	
costs).		Co-locating	analysis	with	simulation	eliminates	
unnecessary	data	movement.

Why	In	Situ	Analytics?

simulation

analysis

simulation

CONVENTIONAL IN SITU

analysis



§ Currently,	simulation	codes	commonly	write	output	data	to	
shared	filesystem.		Analysis	reads	from	shared	filesystem

§ Data	movement	is	expensive	(limited	I/O	bandwidth,	energy	
costs).		Co-locating	analysis	with	simulation	eliminates	
unnecessary	data	movement.

Why	In	Situ	Analytics?

simulation

analysis

simulation

CONVENTIONAL IN SITU

analysis



§ Currently,	simulation	codes	commonly	write	output	data	to	
shared	filesystem.		Analysis	reads	from	shared	filesystem

§ Data	movement	is	expensive	(limited	I/O	bandwidth,	energy	
costs).		Co-locating	analysis	with	simulation	eliminates	
unnecessary	data	movement.

Why	In	Situ	Analytics?

simulation

analysis

simulation

CONVENTIONAL IN SITU

analysis



Examples	of	In	Situ Workloads
§ Visualization

§ Selecting	features	of	the	output	data	that	are	necessary	to	generate	
images	of	simulation	for	human	analysis

§ Cosmology
§ Using	parallel	Voronoi tesellation to	identify	clusters	and	voids	in	the	

output	of	N-body	simulations

§ PreDatA
§ Middleware	supporting	the	deployment	of	user-specified	data	

processing	(e.g.,	generating	histograms)

§ SmartPointer (Bonds)
§ Analysis	of	output	generated	by	molecular	dynamics	codes.		Bonds	

uses	atom	bonding	information	to	identify	and	track	cracks.



Examples	of	In	Situ Workloads
§ Visualization

§ Selecting	features	of	the	output	data	that	are	necessary	to	generate	
images	of	simulation	for	human	analysis

§ Cosmology
§ Using	parallel	Voronoi tesellation to	identify	clusters	and	voids	in	the	

output	of	N-body	simulations

§ PreDatA
§ Middleware	supporting	the	deployment	of	user-specified	data	

processing	(e.g.,	generating	histograms)

§ SmartPointer (Bonds)
§ Analysis	of	output	generated	by	molecular	dynamics	codes.		Bonds	

uses	atom	bonding	information	to	identify	and	track	cracks.



In	Situ	Analytics	&	
Performance	Interference
§ Alternatives	for	co-locating	analytics	with	simulation

§ TIME-SHARED :	analytics	and	simulation	running	on	same	processor	cores
§ SPACE-SHARED :	subset	of	processors	dedicated	to	analytics

§ In	this	paper,	we	examine	time-shared	in	situ	analytics;	look	
for	our	work	on	space-shared	analytics	in	the	future

§ Interrupting	the	simulation	to	run	analysis	may	have	disastrous	
performance	consequences	(cf.	OS	noise:	Hoefler et	al.,	SC10;	
Ferreira	et	al.,	SC08)



Perfectly	Synchronous
In	Situ	Analytics	

PROCESS 3

PROCESS 2

PROCESS 4

PROCESS 1 δ

δ

δ

δ

t1 t2 t3



Perfectly	Synchronous
In	Situ	Analytics	

PROCESS 3

PROCESS 2

PROCESS 4

PROCESS 1 δ

δ

δ

δ

t1 t2 t3



Perfectly	Synchronous
In	Situ	Analytics	(cont’d)



δ

δ

Completely	Asynchronous	
In	Situ	Analytics

PROCESS 3

PROCESS 2

PROCESS 4

PROCESS 1 δ

δ

δ

t1 t2 t3



δ

δ

Completely	Asynchronous	
In	Situ	Analytics

PROCESS 3

PROCESS 2

PROCESS 4

PROCESS 1 δ

δ

δ

t1 t2 t3



δ

δ

Completely	Asynchronous	
In	Situ	Analytics

PROCESS 3

PROCESS 2

PROCESS 4

PROCESS 1 δ

δ

δ

t1 t2 t3



Completely	Asynchronous	
In	Situ	Analytics	(cont’d)



Completely	Asynchronous	
In	Situ	Analytics	(cont’d)

Can we strike a balance between the high 
cost of “perfectly synchronous” and the 
negative performance implications of 

“completely asynchronous”?



Collectives:	Algorithms	vs.	Operations

§ MPI	3.0	section	5.1
It	is	dangerous	to	rely	on	synchronization	side-effects	of	the	collective	
operations	for	program	correctness.	…	On	the	other	hand,	a	correct,	
portable	program	must	allow	for	the	fact	that	a	collective	call	may	be	
synchronizing.		Though	one	cannot	rely	on	any	synchronization	side-
effect,	one	must	program	so	as	to	allow	it.

§ Therefore,	we	explicitly	
analyze	the	synchronizing	
effects	of	collective	algorithms
rather	than	collective	operations

22



§ Dissemination	
(e.g.,	to	implement	MPI_Allreduce)

§ Binomial	tree	dispersal/aggregation	
(e.g.,	to	implement	MPI_Bcast/MPI_Reduce)

§ Stencil	communication
(e.g.,	to	implement	MPI_Neighbor_alltoall)

Collective	Algorithms

23



Experimental	Approach

§ Simulate	application	execution	using	LogGOPSim (Hoefler et	
al.,	LSAP	2010;	see	also	Levy	et	al.,	PMBS	2013)

§ Examine	five	workloads
§ LAMMPS

§ Molecular	dynamics	simulation	 from	Sandia	National	Laboratories.	We	
used	the	LAMMPS	2D	crack	and	Lennard-Jones	(LJ)	potentials.	

§ CTH
§ Application	 from	Sandia	National	Laboratories	for	modeling	 complex	
problems	 that	are	characterized	by	large	deformations	 or	strong	shocks	

§ HPCCG
§ Conjugate	gradient	solver	from	the	Mantevo suite	of	mini-applications

§ LULESH
§ An	application	that	represents	the	behavior	of	a	typical	hydrocode

24



Collective	Algorithm-induced	
Synchronization
§ Microbenchmark that	allows	us	to	vary	collective	frequency
§ Dissemination	has	the	greatest	synchronizing	effect
§ More	frequent	collectives	generally	result	in	tighter	

synchronization	
§ Microbenchmark that	allows	us	to	vary	collective	frequency

2550 millisecond collective period 5 second collective period



Application-level	Synchronization
(Dissemination)
§ Used	simulation	to	measure	the	impact	of	dissemination	

algorithm	on	process	synchronization
§ In	most	cases,	dissemination	synchronizes	processes	to	within	

10s	of	milliseconds

26CTH-st LULESHHPCCG



Application-level	Synchronization
(Binomial	dispersal)
§ Used	simulation	to	measure	impact	of	binomial	dispersal	

algorithm	on	process	synchronization
§ Binomial	dispersal	has	little	impact	on	process	

synchronization

27CTH-st LAMMPS-ljLAMMPS-crack



Synchronizing	Analytics

28

§ Even	modest	synchronization	can	significantly	reduce	the	
impact	of	executing	analytics



Synchronizing	Analytics

29

§ Even	modest	synchronization	can	significantly	reduce	the	
impact	of	executing	analytics



Synchronizing	Analytics

30

§ Even	modest	synchronization	can	significantly	reduce	the	
impact	of	executing	analytics



Conclusion

§ Perfectly	synchronizing	the	execution	of	time-shared	analytics	
tasks	minimizes	impact,	but	may	be	expensive	to	achieve;	
executing	analytics	tasks	with	no	synchronization	can	have	
disastrous	performance	impacts.

§ Some	collective	algorithms	(e.g.,	dissemination,	high-dimension	
stencils)	have	the	effect	of	approximately	synchronizing	
application	execution;	others	(e.g.,	binomial	
dispersal/aggregation)	have	little	effect	on	process	
synchronization

§ Even	modest	synchronization	(e.g.,	within	10s	of	milliseconds)	
can	dramatically	reduce	the	performance	degradation	caused	
by	time-shared	analytics;	expensive	synchronization	methods	
are	unnecessary



Co-authors

§ Kurt	B.	Ferreira
Sandia	National	Laboratories

§ Patrick	Widener
Sandia	National	Laboratories

§ Patrick	G.	Bridges
University	of	New	Mexico

§ Oscar	H.	Mondragon
University	of	New	Mexico



Questions?
sllevy@sandia.gov

www.sandia.gov/~sllevy

33


