
MPI Sessions: Leveraging
Runtime Infrastructure to

Increase Scalability of
Applications at Exascale

Daniel Holmes, EPCC

Kathryn Mohror, LLNL

Ryan E. Grant, Sandia National Laboratories

Anthony Skjellum, Auburn University

Martin Schulz, LLNL

Wesley Bland, Intel

Jeffery M. Squyres, Cisco

MPI Sessions
�  MPI Sessions began as an effort to make

aggressive additions/changes to MPI to ensure it’s
success at Exascale
�  Enable better scalability
�  Increase abstraction for better resource isolation
�  Support less tightly coupled applications

�  History
�  Founding members met for ~1 year
�  MPI Forum has discussed these ideas and

encouraged further work, which led to the
Sessions working group

2

MPI Sessions
�  What is … MPI Sessions?

�  A new way to initialize (and re-initialize) MPI

�  A new way to express scalable communication
topologies

�  A new way to compose application components

�  A new way to compose/couple applications
�  A new way to leverage the greater capabilities of

runtimes

3

Scalability Problem
�  Requiring all processes’ rank information in

COMM_WORLD is too expensive
�  Why keep state for communication peers that will never be

used by the application (connections)?
�  Why completely wire-up a network that doesn’t need it?

�  Solutions:
�  Only keep state for active communications
�  Dynamically gather required data when needed and store

state for the future
�  Establish communication relationships/peers before

communicating (Best predictability of communication
performance)

4

What MPI Sessions is not
�  The only way to achieve memory/performance

scalability
�  Many of the improvements MPI Sessions brings can be

done outside of the API change proposal
�  Sessions forces/heavily encourages good scalable MPI

implementation design

�  A solution for all concurrency issues
�  Doesn’t solve any of the issues of concurrency aside from

memory scalability of key implementation data structures

�  A Fault Tolerance solution (although it may help)
�  Dynamic node composition and potential replacement with

help of runtime could aid fault tolerance efforts

5

New concept: “session”
�  A session is a local handle to the MPI library

�  Implementation intent: lightweight / uses very few
resources

�  Can also cache some local state

�  New routines to manage sessions
�  MPI_Session_init(…, &session);

�  MPI_Session_finalize(…, &session);

�  Can have multiple sessions in an MPI process

�  Can repeatedly init and finalize

MPI Session

MPI Process

ocean library

MPI_SESSION_INIT(…)

atmosphere library

MPI_SESSION_INIT(…)

MPI library

MPI Session

MPI Process

ocean library

atmosphere library

MPI library

ocean
sessio

n

atmos-
phere
sessio

n

Unique handles to the underlying MPI library

Overview
�  Initialize an MPI_Session

�  Query the underlying
run-time system

�  Choose a “set” of
processes

�  Create an MPI_Group

�  Manipulate the MPI_Group
(if desired)

�  Create an MPI_Comm
(applying a topology,
if desired)

Set of Processes

MPI_Group

MPI_Comm

MPI_Session
Sessions
entry point

MPI_Init
entry point

Examples of sets

MPI process 0 MPI process 1 MPI process 2 MPI process 3

mpi://WORLD

job://12942

arch://x86_64

Examples of sets

MPI process 0 MPI process 1 MPI process 2 MPI process 3

location://rack/self location://rack/self

location://rack/17 location://rack/23

user://ocean user://atmosphere

But wait…how do I get sets?
�  Short answer:

MPI_Session_get_names(
MPI_Session session,
char **set_names)

�  Longer answer:
�  Need more/better information from the runtime

�  Good news: runtimes have evolved to provide more than
basic MPI requirements

�  Providing sets is relatively easy

Example list of set names
returned

mpi://WORLD

mpi://SELF

arch://x86_64

location://rack/17

job://12942

user://ocean

Using everything so far
�  Once a Session is created and a set is queried:

�  Create and manipulate groups from the set
�  Just like you can today out of communicators, same

functionality

�  Create a communicator from a group
�  Much like MPI_Comm_create_group today, but with sets

in place of the originating/parent communicator

�  Old method:
Init->comm_create_group(COMM_WORLD)

�  Sessions method: session_create->query sets->create
group->create comm

What to do with INIT and FINALIZE?
�  Sessions does not require MPI_INIT/FINALIZE

�  Sessions uses session_init/session_finalize instead

�  However, this is backward compatible…

�  INIT/FINALIZE creates an implicit session
�  You cannot extract an MPI_Session handle for the

implicit session created by MPI_INIT[_THREAD]

�  Yes, you can still use INIT/FINALIZE in the same
MPI process as other sessions

Living without COMM_WORLD
�  There are benefits beyond optimization/fewer resource

requirements

�  You can now directly create specific types of communicators
without a parent communicator (cartesian, distgraph, etc)

For those that can’t give it up

�  COMM_WORLD is simply a special case of a
set->communicator creation, one that contains all processes
in a job that would be contained in today’s COMM_WORLD,
with a flat all-to-all topology

Law of least astonishment

Intercommunicators and
Sessions

�  Sessions allow for very easy
inter-communicator creation
�  Query multiple sets and use group operations on

them
�  The communication channel to use is now provided

by the runtime
�  No need for network hardware specific code to know

how/where to exchange information

�  The runtime now does the work (which is not that hard
for the runtime)

Intercommunicators
�  Create inter-communicators amongst multiple

applications easily (n applications)
�  Create a Session

�  Query sets with desired application names (assuming
that you have permissions on the apps)

�  Create groups from each set (n groups)

�  Create union of groups
�  Create communicator from group

Sessions Encourage Good MPI
Design

�  Optimizations to MPI can be done outside of
Sessions

�  Sessions strongly encourages good MPI design
through requirements
�  Confining set space and peer communication requirements
�  Encouraging (not forcing) non-global wireup at initialization time
�  Standardizing runtime interactions (capabilities)

�  Allowing good MPI design with backwards
compatibility
�  MPI_Init still works

�  Can utilize underlying sessions architecture to provide dynamic conn.
�  Improve legacy code performance transparently

�  Don’t have dynamic COMM_WORLD (can’t have everything) 18

Conclusions
�  MPI Sessions leverages modern runtime

capabilities for MPI

�  Designed to encourage highly scalable MPI
implementation design

�  Fully backwards compatible

�  Provides easy inter communicator creation

Thank You for Listening

Questions?

