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MPI Sessions 
�  MPI Sessions began as an effort to make 

aggressive additions/changes to MPI to ensure it’s 
success at Exascale 
�  Enable better scalability 
�  Increase abstraction for better resource isolation 
�  Support less tightly coupled applications 

�  History 
�  Founding members met for ~1 year 
�  MPI Forum has discussed these ideas and 

encouraged further work, which led to the 
Sessions working group 
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MPI Sessions 
�  What is … MPI Sessions? 

�  A new way to initialize (and re-initialize) MPI 

�  A new way to express scalable communication 
topologies 

�  A new way to compose application components 

�  A new way to compose/couple applications 
�  A new way to leverage the greater capabilities of  

runtimes 
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Scalability Problem 
�  Requiring all processes’ rank information in 

COMM_WORLD is too expensive 
�  Why keep state for communication peers that will never be 

used by the application (connections)? 
�  Why completely wire-up a network that doesn’t need it? 

�  Solutions: 
�  Only keep state for active communications 
�  Dynamically gather required data when needed and store 

state for the future 
�  Establish communication relationships/peers before 

communicating (Best predictability of communication 
performance) 
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What MPI Sessions is not 
�  The only way to achieve memory/performance 

scalability 
�  Many of  the improvements MPI Sessions brings can be 

done outside of  the API change proposal 
�  Sessions forces/heavily encourages good scalable MPI 

implementation design 

�  A solution for all concurrency issues 
�  Doesn’t solve any of  the issues of  concurrency aside from 

memory scalability of  key implementation data structures 

�  A Fault Tolerance solution (although it may help) 
�  Dynamic node composition and potential replacement with 

help of  runtime could aid fault tolerance efforts 
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New concept: “session” 
�  A session is a local handle to the MPI library 

�  Implementation intent: lightweight / uses very few 
resources 

�  Can also cache some local state 

�  New routines to manage sessions 
�  MPI_Session_init(…, &session); 

�  MPI_Session_finalize(…, &session); 

�  Can have multiple sessions in an MPI process 

�  Can repeatedly init and finalize 
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Overview 
�  Initialize an MPI_Session 

�  Query the underlying  
run-time system 

�  Choose a “set” of  
processes 

�  Create an MPI_Group 

�  Manipulate the MPI_Group 
(if  desired) 

�  Create an MPI_Comm 
(applying a topology, 
if  desired) 

Set of  Processes 

MPI_Group 

MPI_Comm 

MPI_Session 
Sessions 
entry point 

MPI_Init 
entry point 



Examples of  sets 

MPI process 0 MPI process 1 MPI process 2 MPI process 3 

mpi://WORLD 

job://12942 

arch://x86_64 



Examples of  sets 

MPI process 0 MPI process 1 MPI process 2 MPI process 3 

location://rack/self  location://rack/self  

location://rack/17 location://rack/23 

user://ocean user://atmosphere 



But wait…how do I get sets? 
�  Short answer: 

MPI_Session_get_names( 
MPI_Session session, 
char **set_names) 

�  Longer answer: 
�  Need more/better information from the runtime 

�  Good news: runtimes have evolved to provide more than 
basic MPI requirements 

�  Providing sets is relatively easy 

Example list of set names 
returned 

mpi://WORLD 

mpi://SELF 

arch://x86_64 

location://rack/17 

job://12942 

user://ocean 



Using everything so far 
�  Once a Session is created and a set is queried: 

�  Create and manipulate groups from the set 
�  Just like you can today out of  communicators, same 

functionality 

�  Create a communicator from a group 
�  Much like MPI_Comm_create_group today, but with sets 

in place of  the originating/parent communicator 

�  Old method: 
Init->comm_create_group(COMM_WORLD) 

�  Sessions method: session_create->query sets->create 
group->create comm 



What to do with INIT and FINALIZE? 
�  Sessions does not require MPI_INIT/FINALIZE 

�  Sessions uses session_init/session_finalize instead 

�  However, this is backward compatible… 

�  INIT/FINALIZE creates an implicit session 
�  You cannot extract an MPI_Session handle for the 

implicit session created by MPI_INIT[_THREAD] 

�  Yes, you can still use INIT/FINALIZE in the same 
MPI process as other sessions 



Living without COMM_WORLD 
�  There are benefits beyond optimization/fewer resource 

requirements 

�  You can now directly create specific types of  communicators 
without a parent communicator (cartesian, distgraph, etc) 

For those that can’t give it up 

�  COMM_WORLD is simply a special case of  a  
set->communicator creation, one that contains all processes 
in a job that would be contained in today’s COMM_WORLD, 
with a flat all-to-all topology 

Law of  least astonishment 



Intercommunicators and 
Sessions 

�  Sessions allow for very easy  
inter-communicator creation 
�  Query multiple sets and use group operations on 

them 
�  The communication channel to use is now provided 

by the runtime 
�  No need for network hardware specific code to know 

how/where to exchange information 

�  The runtime now does the work (which is not that hard 
for the runtime) 



Intercommunicators 
�  Create inter-communicators amongst multiple 

applications easily (n applications) 
�  Create a Session 

�  Query sets with desired application names (assuming 
that you have permissions on the apps) 

�  Create groups from each set (n groups) 

�  Create union of  groups 
�  Create communicator from group 



Sessions Encourage Good MPI 
Design 

�  Optimizations to MPI can be done outside of  
Sessions 

�  Sessions strongly encourages good MPI design 
through requirements 
�  Confining set space and peer communication requirements 
�  Encouraging (not forcing) non-global wireup at initialization time 
�  Standardizing runtime interactions (capabilities) 

�  Allowing good MPI design with backwards 
compatibility 
�  MPI_Init still works 

�  Can utilize underlying sessions architecture to provide dynamic conn. 
�  Improve legacy code performance transparently 

�  Don’t have dynamic COMM_WORLD (can’t have everything) 18 



Conclusions 
�  MPI Sessions leverages modern runtime 

capabilities for MPI 

�  Designed to encourage highly scalable MPI 
implementation design 

�  Fully backwards compatible 

�  Provides easy inter communicator creation 



Thank You for Listening 

Questions? 


