
Modeling MPI Communication
Performance on SMP Nodes:
 Is it Time to Retire the Ping

Pong Test

William Gropp, Luke Olson
and Philipp Samfass

2

SMP Nodes: One Model

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

3

Classic Performance Model

•  s + rn
•  Model combines overhead and network

latency (s) and a single communication
rate 1/r for n bytes of data

•  Good fit to machines when it was
introduced

•  But does it match modern SMP-based
machines?
♦  Let’s look at the the communication rate per

process with processes communicating
between two nodes

4

Cray XE6

• Rate per MPI process

Message size

B
an

dw
id

th

5

Blue Gene/Q

• Rate per MPI process

Message size

B
an

dw
id

th

6

Why this Behavior?

• The T = s + r n model predicts the
same performance independent of
the number of communicating
processes
♦ What is going on?
♦ How should we model the time for

communication?

7

SMP Nodes: One Model

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

MPI Process

NIC

8

Modeling the Communication

• Each link can support a rate rL of
data

• Data is pipelined (Logp model)
♦ Store and forward analysis is different

• Overhead is completely parallel
♦ k processes sending one short

message each takes the same time as
one process sending one short
message

9

Sending One Message From
Each Process

• How do we model each process
sending one message to another
process on another node?
♦ Classic “postal” model:
♦ T = s+r n
♦ Each process has no impact on the

time that another process takes

10

Observed Rates for Large
Messages

0.00E+00

1.00E+09

2.00E+09

3.00E+09

4.00E+09

5.00E+09

6.00E+09

7.00E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n=256k

n=512k

n=1M

n=2M

Reached
maximum
data rate

Not double
single process
rate

11

A Slightly Better Model

• Assume that the sustained
communication rate is limited by
♦ The maximum rate along any
shared link
• The link between NICs

♦ The aggregate rate along parallel
links
• Each of the “links” from an MPI
process to/from the NIC

12

A Slightly Better Model

• For k processes sending messages,
the sustained rate is
♦ min(RNIC-NIC, k RCORE-NIC)

• Thus
♦ T = s + k n/min(RNIC-NIC, k RCORE-NIC)

• Note if RNIC-NIC is very large (very fast
network), this reduces to
♦ T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC

13

Another Refinement

•  If communication by a second
process can’t achieve the same
bandwidth as a single process, we
can split the rate into two terms:
♦ T =s + k n/min(RN, RCb +(k−1)RCi)

• While slightly better than the 3
term formula (in the rendezvous
regime), not enough better for the
added complexity

14

Two Examples

• Two simplified examples:

Node Node Node NIC

Blue Gene/Q Cray XE6

•  Note differences:
•  BG/Q : Multiple paths into the network
•  Cray XE6: Single path to NIC (shared by 2 nodes)
•  Multiple processes on a node sending can exceed the

available bandwidth of the single path

15

The Test

• Nodecomm discovers the underlying
physical topology

•  Performs point-to-point
communication (ping-pong) using 1
to # cores per node to another node
(or another chip if a node has
multiple chips)

• Outputs communication time for 1 to
cores along a single channel
♦ Note that hardware may route some

communication along a longer path to
avoid contention.

16

Examples from Current
Systems

• The following results use the code
available soon at
♦ https://bitbucket.org/william gropp/

baseenv

17

New Model
(Full PingPong Time, 4 parameter model)

• RN = RNIC ; RC = RCORE-NIC
• Short regime

♦ s = 4 usec, RC = 0.63 GB/s,
RCi = -0.18GB/s, RN = ∞

• Eager regime
♦ s = 11 usec, RCb = 1.7GB/s,

RCi = 0.062GB/s, RN = ∞
• Rendezvous regime

♦ s = 20 usec, RCb = 3.6 GB/s,
RCi = 0.61GB/s, RN = 5.5 GB/s

18

How Well Does this Model
Work?

• We show results on a wide range
of systems:
♦ Cray XE6 with Gemini network
♦ IBM BG/Q
♦ Cluster with InfiniBand
♦ Cluster with another network

• Results show nodecomm
performance, model predictions,
and relative error

19

Cray: Measured Data

20

Cray: 3 parameter model

21

Cray: 2 parameter model

22

Cray XE6

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Extended max-rate, four-parameter
model.

(d) Postal, two-parameter model (1 pair). (e) Postal, two-parameter model (16 pairs).
(f) Postal, two-parameter model (1–16
pairs).

Figure 1: Aggregate effective bandwidth and fitted models on Blue Waters (Cray XE6) with 1 (bottom) to 16 (top) commu-
nicating pairs.

Table 1: Max-rate model parameters (4) for Blue Waters (Cray XE6).

Phase α RN RCb
RCi

[sec] [bytes/sec] [bytes/sec] [bytes/sec]

short 4.0× 10−6
∞ 6.3× 108 −1.8× 107

eager 1.1× 10−5
∞ 1.7× 109 6.2× 107

rendezvous 2.0× 10−5 5.5× 109 3.6× 109 6.1× 108

the node into the network. However, the model is not able
to reproduce the sharp ridge demonstrated in the measured
data of Figure 4a. Instead, Figure 5 shows that the modified
model (5) gives a closer fit in this particular case. Never-
theless, we recommend using the max-rate model in general
due to its ease of use and the flexibility in generalizing to
other systems.

Arcetri Cisco Cluster

The Arcetri UCS Balanced Technical Computing Cluster at
Cisco Systems employs a Cisco Fabric Interconnect and dual
12-core Intel Haswell 2680 chips per node. This allows us
to scale the number of communicating pairs to 24. The re-
sults are consistent with the other machines: the max-rate,
three-parameter model effectively captures the behavior of
the bandwidth for multiple processing elements. In this run
in particular, the eager-rendezvous threshold is high (cf. Fig-
ure 7), yet fitting the model to each region identifies the
salient features of the performance.

5. CONCLUSIONS

We have shown that the postal model fails to capture the
communication behavior of multicore nodes and that a sim-
ple addition to the model provides a much more accurate
performance model. While the proposed model has its own
limitations (for example, it doesn’t include effects of shared
caches between cores or interactions between different chips
in a multi-chip node), it is successful in providing insight
into the performance of message-passing applications and to
guidance into the design of algorithms.

We believe that it is time to retire the postal model and
use the proposed three-parameter model,

T = α+ kn/min(RN , kRc)

instead. Further, vendors can easily provide this information—
they often already provide α and RC by using one of the
existing standard benchmarks; RN , the maximum rate that
can be sustained by the network interface is also often de-
scribed in the vendor literature, and as we have shown, can
be reliably measured by a simple benchmark, which we have
provided.

We also believe that eager/rendezvous thresholds should

23

Cray XE6 – Relative Error

(a) Max-rate, three-parameter model. (b) Extended max-rate, four-parameter
model.

(c) Postal, two-parameter model (1 pair). (d) Postal, two-parameter model (16 pairs).
(e) Postal, two-parameter model (1–16
pairs).

Figure 2: Relative error in the least-squares fit of the models in Figure 1. note: The color scheme scales are different for each
figure.

Table 2: Relative error sums for the different fit variants.

max-rate max-rate postal postal postal
Phase four-parameter three-parameter two-parameter two-parameter two-parameter

(1 pair) (16 pairs) (complete set)

short 1.23 1.31 7.40 2.59 1.81
eager 1.71 1.85 10.97 3.54 2.37
rendezvous 7.60 8.37 58.78 109.39 46.87

24

InfiniBand Cluster
 (Taub at Illinois)

(a) Measured data (TCP). (b) Max-rate, three-parameter model (TCP).

(c) Relative error (TCP).

(d) Measured data (IB). (e) Max-rate, three-parameter model (IB).

(f) Relative error (IB).

Figure 3: Aggregate effective bandwidth on the Illinois Taub Cluster with InfiniBand. 1 (bottom line) to 12 (top line)
communicating processing pairs using TCP/MPICH 3.1.3 (top row) and InfiniBand/MVAPICH2.1 (bottom row).

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Relative error.

Figure 4: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

25

IBM BG/Q

(a) Measured data (TCP). (b) Max-rate, three-parameter model (TCP).

(c) Relative error (TCP).

(d) Measured data (IB). (e) Max-rate, three-parameter model (IB).

(f) Relative error (IB).

Figure 3: Aggregate effective bandwidth on the Illinois Taub Cluster with InfiniBand. 1 (bottom line) to 12 (top line)
communicating processing pairs using TCP/MPICH 3.1.3 (top row) and InfiniBand/MVAPICH2.1 (bottom row).

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Relative error.

Figure 4: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Modified max-rate model.
(c) Relative error of the model fit.

Figure 5: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Max-rate, three-parameter model.

(c) Relative error.

Figure 6: Aggregate effective bandwidth results the Cisco cluster. The number of communicating pairs increases from bottom
to top.

T=kn/min(RN,kn/(s+n/RC))

26

Cisco Cluster

(a) Measured data. (b) Modified max-rate model.
(c) Relative error of the model fit.

Figure 5: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Max-rate, three-parameter model.

(c) Relative error.

Figure 6: Aggregate effective bandwidth results the Cisco cluster. The number of communicating pairs increases from bottom
to top.

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

message size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

b
a
n

d
w

id
th

[b
y
te

s/
se

c]

×109

25548 Bytes

slope=7713
slope=17971

Figure 7: Bandwidth rates using mpptest on the Cisco clus-
ter. buflimit identifies the threshold at 25548 bytes.

be identified and different model parameters used in each
regime. While the decision to use eager, rendezvous, or an-
other protocol is up to the MPI implementation (and there
are other choices, such as a eager with a NACK to reject mes-
sages that are too long), most MPI implementations choose
among a few protocols depending on the message length,
and this should be taken into account in algorithm analysis
and design.
As an example of the use of this model in algorithm de-

sign, consider the question of how many processes on a node
should communication at the same time to minimize the
communication time. This requires achieving the maximum
bandwidth out of the node. Using the new model, the min-
imum time is achieved when the number of communication
MPI processes is k = RN/Rc, assuming no communica-
tion/computation overlap.
In summary, we hope the community adopts this model

for communication time as it gives a much more accurate ap-
proximation to the performance of MPI on multicore nodes
and is nearly as easy to use as the venerable postal model.

5.1 Acknowledgments
This research was supported in part by ExxonMobil Con-

tract EM08150.9. This research is part of the Blue Waters
sustained-petascale computing project, which is supported
by the National Science Foundation (award number OCI 07–
25070) and the state of Illinois. The authors are grateful for
the access to the Arcetri UCS Balanced Technical Comput-
ing Cluster at Cisco Systems.

6. REFERENCES
[1] T. Agarwal, A. Sharma, and L. V. Kalé.

Topology-aware task mapping for reducing
communication contention on large parallel machines.
In Proceedings of the 20th International Conference on
Parallel and Distributed Processing, IPDPS’06, pages
145–145, Washington, DC, USA, 2006. IEEE
Computer Society.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. LogGP: Incorporating long messages
into the LogP model—one step closer towards a
realistic model for parallel computation. In
Proceedings of the Seventh Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’95,
pages 95–105, New York, NY, USA, 1995. ACM.

[3] A. Bar-Noy and S. Kipnis. Designing broadcasting
algorithms in the postal model for message-passing
systems. In Proceedings of the Fourth Annual ACM
Symposium on Parallel Algorithms and Architectures,
SPAA ’92, pages 13–22, New York, NY, USA, 1992.
ACM.

[4] A. Bhatele, N. Jain, W. D. Gropp, and L. V. Kale.
Avoiding hot-spots on two-level direct networks. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 76:1–76:11, New York, NY,
USA, 2011. ACM.

[5] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay,
E. E. Santos, K. E. Schauser, R. Subramonian, and
T. von Eicken. LogP: A practical model of parallel
computation. Commun. ACM, 39(11):78–85, Nov.
1996.

[6] W. D. Gropp and E. Lusk. Reproducible
measurements of MPI performance characteristics. In
J. Dongarra, E. Luque, and T. Margalef, editors,
Recent Advances in Parallel Virtual Machine and
Message Passing Interface, volume 1697 of Lecture
Notes in Computer Science, pages 11–18. Springer
Verlag, 1999. 6th European PVM/MPI Users’ Group
Meeting, Barcelona, Spain, September 1999.

[7] N. A. W. A. Hamid and P. D. Coddington.
Comparison of MPI benchmark programs on shared
memory and distributed memory machines
(point-to-point communication). IJHPCA,
24(4):469–483, 2010.

[8] R. Hockney and C. Jesshope. Parallel Computers:
Architecture, Programming and Algorithms. 1981.

[9] T. Hoefler, T. Mehlan, A. Lumsdaine, and W. Rehm.
Netgauge: A network performance measurement
framework. In R. H. Perrott, B. M. Chapman,
J. Subhlok, R. F. de Mello, and L. T. Yang, editors,
HPCC, volume 4782 of Lecture Notes in Computer
Science, pages 659–671. Springer, 2007.

[10] S. Hunold, A. Carpen-Amarie, and J. L. Träff.
Reproducible MPI micro-benchmarking isn’t as easy
as you think. In J. Dongarra, Y. Ishikawa, and
A. Hori, editors, EuroMPI/ASIA, page 69. ACM,
2014.

[11] Intel Corporation. Getting started with Intel MPI
Benchmarks 4.1.

[12] Phloem MPI benchmarks.
https://asc.llnl.gov/sequoia/benchmarks/
PhloemMPIBenchmarks summary v1.0.pdf.

[13] P. Luszczek, J. J. Dongarra, D. Koester,
R. Rabenseifner, B. Lucas, J. Kepner, J. Mccalpin,
D. Bailey, and D. Takahashi. Introduction to the HPC
Challenge Benchmark Suite. Technical report, 2005.

[14] H. Mierendorff, K. Cassirer, and H. Schwamborn.
Working with MPI benchmarking suites on ccNUMA
architectures. In J. Dongarra, P. Kacsuk, and
N. Podhorszki, editors, Recent Advances in Parallel
Virutal Machine and Message Passing Interface,
number 1908 in Springer Lecture Notes in Computer
Science, pages 18–26, Sept. 2000.

[15] OSU Micro-Benchmarks 5.3.
http://mvapich.cse.ohio-state.edu/benchmarks/.

[16] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E.

27

Notes

• Both Cray XE6 and IBM BG/Q have
inadequate bandwidth to support
each core sending data along the
same link
♦ But BG/Q has more independent

links, so it is able to sustain a higher
effective “halo exchange”

28

Modeling Communication

• For k processes sending messages
concurrently from the same node,
the correct (more precisely, a
much better) time model is
♦ T = s + k n/min(RNIC-NIC, k RCORE-NIC)

• Further terms improve this model,
but this one is sufficient for many
uses

29

Conclusion

•  Yes, it is time to retire (or at least
augment) the pingpong test

•  Fortunately, a single additional
parameter significantly improves the
value of the communication
performance model

•  For algorithm and code designers, an
additional message
♦ Distribute communication in time so that

off-node communication is less of a
bottleneck

30

Thanks!

• ExxonMobile Upstream Research
• Blue Waters Sustained Petascale

Project, supported by the National
Science Foundation (award
number OCI 07–25070) and the
state of Illinois.

• Cisco Systems for access to the
Arcetri UCS Balanced Technical
Computing Cluster

