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SMP Nodes: One Model 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

NIC 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

MPI Process 

NIC 



3 

Classic Performance Model 

•  s + rn 
•  Model combines overhead and network 

latency (s) and a single communication 
rate 1/r for n bytes of data 

•  Good fit to machines when it was 
introduced 

•  But does it match modern SMP-based 
machines? 
♦  Let’s look at the the communication rate per 

process with processes communicating 
between two nodes 
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Why this Behavior? 

• The T = s + r n model predicts the 
same performance independent of 
the number of communicating 
processes 
♦ What is going on? 
♦ How should we model the time for 

communication? 
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Modeling the Communication 

• Each link can support a rate rL of 
data 

• Data is pipelined (Logp model) 
♦ Store and forward analysis is different 

• Overhead is completely parallel 
♦ k processes sending one short 

message each takes the same time as 
one process sending one short 
message 
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Sending One Message From 
Each Process 

• How do we model each process 
sending one message to another 
process on another node? 
♦ Classic “postal” model: 
♦ T = s+r n 
♦ Each process has no impact on the 

time that another process takes 



10 

Observed Rates for Large 
Messages 
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A Slightly Better Model 

• Assume that the sustained 
communication rate is limited by 
♦ The maximum rate along any 
shared link 
• The link between NICs 

♦ The aggregate rate along parallel 
links 
• Each of the “links” from an MPI 
process to/from the NIC 
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A Slightly Better Model 

• For k processes sending messages, 
the sustained rate is 
♦ min(RNIC-NIC, k RCORE-NIC) 

• Thus 
♦ T = s + k n/min(RNIC-NIC, k RCORE-NIC) 

• Note if RNIC-NIC is very large (very fast 
network), this reduces to 
♦ T = s + k n/(k RCORE-NIC) = s + n/RCORE-NIC 
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Another Refinement 

•  If communication by a second 
process can’t achieve the same 
bandwidth as a single process, we 
can split the rate into two terms:  
♦ T =s + k n/min(RN, RCb +(k−1)RCi) 

• While slightly better than the 3 
term formula (in the rendezvous 
regime), not enough better for the 
added complexity 
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Two Examples 

• Two simplified examples: 

Node Node Node NIC 

Blue Gene/Q Cray XE6 

•  Note differences: 
•  BG/Q : Multiple paths into the network 
•  Cray XE6: Single path to NIC (shared by 2 nodes) 
•  Multiple processes on a node sending can exceed the 

available bandwidth of the single path 
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The Test 

• Nodecomm discovers the underlying 
physical topology 

•  Performs point-to-point 
communication (ping-pong) using 1 
to # cores per node to another node 
(or another chip if a node has 
multiple chips) 

• Outputs communication time for 1 to 
# cores along a single channel 
♦ Note that hardware may route some 

communication along a longer path to 
avoid contention. 
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Examples from Current 
Systems 

• The following results use the code 
available soon at 
♦ https://bitbucket.org/william gropp/

baseenv  
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New Model  
(Full PingPong Time, 4 parameter model)   

• RN = RNIC ; RC = RCORE-NIC 
• Short regime 

♦ s = 4 usec, RC = 0.63 GB/s,  
RCi = -0.18GB/s, RN = ∞ 

• Eager regime 
♦ s = 11 usec, RCb = 1.7GB/s,  

RCi = 0.062GB/s, RN = ∞ 
• Rendezvous regime 

♦ s = 20 usec, RCb = 3.6 GB/s,  
RCi = 0.61GB/s, RN = 5.5 GB/s 
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How Well Does this Model 
Work? 

• We show results on a wide range 
of systems: 
♦ Cray XE6 with Gemini network 
♦ IBM BG/Q 
♦ Cluster with InfiniBand 
♦ Cluster with another network 

• Results show nodecomm 
performance, model predictions, 
and relative error 
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Cray: Measured Data 
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Cray: 3 parameter model 
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Cray: 2 parameter model 
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Cray XE6 

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Extended max-rate, four-parameter
model.

(d) Postal, two-parameter model (1 pair). (e) Postal, two-parameter model (16 pairs).
(f) Postal, two-parameter model (1–16
pairs).

Figure 1: Aggregate effective bandwidth and fitted models on Blue Waters (Cray XE6) with 1 (bottom) to 16 (top) commu-
nicating pairs.

Table 1: Max-rate model parameters (4) for Blue Waters (Cray XE6).

Phase α RN RCb
RCi

[sec] [bytes/sec] [bytes/sec] [bytes/sec]

short 4.0× 10−6
∞ 6.3× 108 −1.8× 107

eager 1.1× 10−5
∞ 1.7× 109 6.2× 107

rendezvous 2.0× 10−5 5.5× 109 3.6× 109 6.1× 108

the node into the network. However, the model is not able
to reproduce the sharp ridge demonstrated in the measured
data of Figure 4a. Instead, Figure 5 shows that the modified
model (5) gives a closer fit in this particular case. Never-
theless, we recommend using the max-rate model in general
due to its ease of use and the flexibility in generalizing to
other systems.

Arcetri Cisco Cluster

The Arcetri UCS Balanced Technical Computing Cluster at
Cisco Systems employs a Cisco Fabric Interconnect and dual
12-core Intel Haswell 2680 chips per node. This allows us
to scale the number of communicating pairs to 24. The re-
sults are consistent with the other machines: the max-rate,
three-parameter model effectively captures the behavior of
the bandwidth for multiple processing elements. In this run
in particular, the eager-rendezvous threshold is high (cf. Fig-
ure 7), yet fitting the model to each region identifies the
salient features of the performance.

5. CONCLUSIONS

We have shown that the postal model fails to capture the
communication behavior of multicore nodes and that a sim-
ple addition to the model provides a much more accurate
performance model. While the proposed model has its own
limitations (for example, it doesn’t include effects of shared
caches between cores or interactions between different chips
in a multi-chip node), it is successful in providing insight
into the performance of message-passing applications and to
guidance into the design of algorithms.

We believe that it is time to retire the postal model and
use the proposed three-parameter model,

T = α+ kn/min(RN , kRc)

instead. Further, vendors can easily provide this information—
they often already provide α and RC by using one of the
existing standard benchmarks; RN , the maximum rate that
can be sustained by the network interface is also often de-
scribed in the vendor literature, and as we have shown, can
be reliably measured by a simple benchmark, which we have
provided.

We also believe that eager/rendezvous thresholds should
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Cray XE6 – Relative Error 

(a) Max-rate, three-parameter model. (b) Extended max-rate, four-parameter
model.

(c) Postal, two-parameter model (1 pair). (d) Postal, two-parameter model (16 pairs).
(e) Postal, two-parameter model (1–16
pairs).

Figure 2: Relative error in the least-squares fit of the models in Figure 1. note: The color scheme scales are different for each
figure.

Table 2: Relative error sums for the different fit variants.

max-rate max-rate postal postal postal
Phase four-parameter three-parameter two-parameter two-parameter two-parameter

(1 pair) (16 pairs) (complete set)

short 1.23 1.31 7.40 2.59 1.81
eager 1.71 1.85 10.97 3.54 2.37
rendezvous 7.60 8.37 58.78 109.39 46.87
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InfiniBand Cluster 
 (Taub at Illinois) 

(a) Measured data (TCP). (b) Max-rate, three-parameter model (TCP).

(c) Relative error (TCP).

(d) Measured data (IB). (e) Max-rate, three-parameter model (IB).

(f) Relative error (IB).

Figure 3: Aggregate effective bandwidth on the Illinois Taub Cluster with InfiniBand. 1 (bottom line) to 12 (top line)
communicating processing pairs using TCP/MPICH 3.1.3 (top row) and InfiniBand/MVAPICH2.1 (bottom row).

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Relative error.

Figure 4: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.
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IBM BG/Q 

(a) Measured data (TCP). (b) Max-rate, three-parameter model (TCP).

(c) Relative error (TCP).

(d) Measured data (IB). (e) Max-rate, three-parameter model (IB).

(f) Relative error (IB).

Figure 3: Aggregate effective bandwidth on the Illinois Taub Cluster with InfiniBand. 1 (bottom line) to 12 (top line)
communicating processing pairs using TCP/MPICH 3.1.3 (top row) and InfiniBand/MVAPICH2.1 (bottom row).

(a) Measured data. (b) Max-rate, three-parameter model.
(c) Relative error.

Figure 4: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Modified max-rate model.
(c) Relative error of the model fit.

Figure 5: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Max-rate, three-parameter model.

(c) Relative error.

Figure 6: Aggregate effective bandwidth results the Cisco cluster. The number of communicating pairs increases from bottom
to top.

T=kn/min(RN,kn/(s+n/RC)) 
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Cisco Cluster 

(a) Measured data. (b) Modified max-rate model.
(c) Relative error of the model fit.

Figure 5: Aggregate effective bandwidth on IBM Blue Gene/Q. The number of communicating pairs increases from bottom
to top.

(a) Measured data. (b) Max-rate, three-parameter model.

(c) Relative error.

Figure 6: Aggregate effective bandwidth results the Cisco cluster. The number of communicating pairs increases from bottom
to top.
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Figure 7: Bandwidth rates using mpptest on the Cisco clus-
ter. buflimit identifies the threshold at 25548 bytes.

be identified and different model parameters used in each
regime. While the decision to use eager, rendezvous, or an-
other protocol is up to the MPI implementation (and there
are other choices, such as a eager with a NACK to reject mes-
sages that are too long), most MPI implementations choose
among a few protocols depending on the message length,
and this should be taken into account in algorithm analysis
and design.
As an example of the use of this model in algorithm de-

sign, consider the question of how many processes on a node
should communication at the same time to minimize the
communication time. This requires achieving the maximum
bandwidth out of the node. Using the new model, the min-
imum time is achieved when the number of communication
MPI processes is k = RN/Rc, assuming no communica-
tion/computation overlap.
In summary, we hope the community adopts this model

for communication time as it gives a much more accurate ap-
proximation to the performance of MPI on multicore nodes
and is nearly as easy to use as the venerable postal model.
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Notes 

• Both Cray XE6 and IBM BG/Q have 
inadequate bandwidth to support 
each core sending data along the 
same link 
♦ But BG/Q has more independent 

links, so it is able to sustain a higher 
effective “halo exchange” 
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Modeling Communication 

• For k processes sending messages 
concurrently from the same node, 
the correct (more precisely, a 
much better) time model is 
♦ T = s + k n/min(RNIC-NIC, k RCORE-NIC) 

• Further terms improve this model, 
but this one is sufficient for many 
uses 
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Conclusion 

•  Yes, it is time to retire (or at least 
augment) the pingpong test 

•  Fortunately, a single additional 
parameter significantly improves the 
value of the communication 
performance model 

•  For algorithm and code designers, an 
additional message 
♦ Distribute communication in time so that 

off-node communication is less of a 
bottleneck 
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