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MPI The King 

• MPI remains the dominant 
programming model for massively 
parallel computing in the sciences 
♦ Careful design filled a gap 
♦ Good and ubiquitous implementations 

provide reliable performance 
♦ Applications developers found it 

(relatively) easy to use 
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Where Is MPI Today? 

• Applications already running at 
large scale: 
System Cores 
Tianhe-2 3,120,000 (most in Phi) 
Sequoia 1,572,864 
Blue Waters 792,064* + 1/6 acc 
Mira 786,432 
K computer 705,024 
Julich BG/Q 393,216 
Titan 299,008* + acc 

* 2 cores share a wide FP unit 
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Science that can’t be done in any 
other way 

•  Plasma simulations – W. Mori 
(UCLA)  

•  High sustained floating point 
performance needed 
♦ 150 million grid points and 300 million 

particles 
♦ (2 cm)3 of plasma 
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Science that can’t be done in any 
other way 

•  Turbulent Stellar Hydrodynamics –  
P. Woodward (UMN) 
♦ Sustained 1 PF/s computing for weeks 
♦ Back to back full system jobs. 

•  Transistor roadmap projections 
– G. Klimeck (Purdue) 
♦ Support for CPU/GPU codes. 
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Science that can’t be done in any 
other way 

•  Earthquake response modeling – T. Jordan 
(USC) 
♦  CyberShake workloads using CPU and GPU 

nodes, sustained, for weeks. 
♦  Seismic hazard maps (NSHMP) and building 

codes. 
 
 

•  Severe storm modeling – B. Wilhelmson 
(Illinois) 
♦  First-of-its-kind, 3-D simulation of a  

long-track EF5 tornado. 
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Science that can’t be done in any 
other way 

•  Nek5000 – P. Fischer (Illinois) 
♦  Computational fluid dynamics, heat transfer, and combustion. 
♦  Strong scales to over a million MPI ranks. 

8 
IC engine intake stroke; G. Giannakopoulos, ETHZ Nek5000 Strong-Scaling Study on Mira. 
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MPI is not only for Scientific 
Computing 

and is close to native performance (geometric mean of 1.1-1.2X
for pagerank, BFS and collaborative filtering, and 2.5X for triangle
counting). (3) Giraph, on the other hand, is 2-3 orders of magnitude
slower than native code (4) CombBLAS and GraphLab perform
well on average. CombBLAS is very good for all algorithms except
for Triangle Counting, where it ran out of memory for real-world
inputs while computing the A2 matrix product. This is an express-
ibility problem in CombBLAS. GraphLab is 3-9X off from native
code, but performs reasonably consistently across algorithms. (5)
SociaLite performance is typically comparable to GraphLab (some-
times slightly better and sometimes slightly worse).

Finally, note that the trends on the synthetic dataset are in line
with real-world data, showing that our synthetic generators are ef-
fective in modeling real-world data.

5.3 Multi node results
We first show our scaling results of our frameworks on multiple

nodes. A major reason for using multiple nodes to process graph
data is to store the data in memory across the nodes. Hence a com-
mon use case is weak-scaling, where the data per node is kept con-
stant (and hence total data set size increases with number of nodes).
If we obtain perfect performance scaling, then the runtime should
be constant as we increase node count and data set size. In this
study, we include CombBLAS, GraphLab, SociaLite and Giraph
frameworks. Galois is currently only a single node framework and
we hence do not include results here.

Figures 4(a), 4(b), 4(c) and 4(d) show the results of multi node
runs on synthetically generated data sets for our benchmarks. The
data sizes are chosen so that all frameworks could complete without
running out of memory. Figure 5 shows the corresponding perfor-
mance results for larger real-world graphs. We run each algorithm
using one large dataset – we use the Twitter dataset [20] for Pager-
ank, BFS and Triangle Counting and the Yahoo Music KDDCup
dataset 2011 dataset for Collaborative Filtering [7].

Algorithm CombBLAS GraphLab SociaLite Giraph
PageRank 2.5 12.1 7.9 74.4

BFS 7.1 29.5 18.9 494.3
Coll. Filtering 3.5 7.1 7.0 87.9

Triangle Count. 13.1 3.6 1.5 54.4

Table 6: Summary of performance differences for multi node bench-
marks on different frameworks. Each entry is a slowdown factor from
native code, hence lower numbers indicate better performance.

As a convenient summary of performance, Table 6 shows the
geometric mean of the performance differences between our frame-
works combining real-world and synthetic datasets at different scales.
The table shows performance slowdowns of different frameworks
for specific algorithms compared to the native code for that algo-
rithm – hence lower numbers are better.

We note the following trends in our multi-node results. (1) There
is wide variability in our multi node results; as an example, na-
tive code performs anywhere between 2X to more than 560X better
than other frameworks on multi node runs (still up to 30X discount-
ing Giraph runtimes). (2) Giraph performs worse by far than other
frameworks and is frequently 2-3 orders magnitude off from na-
tive performance. (3) CombBLAS is competitive for Pagerank (ge-
omean of 2.5X native performance), BFS (7.1X off native) and Col-
laborative Filtering (3.5X off native). However, it performs poorly
on Triangle Counting due to extra computations performed as a re-
sult of framework expressibility issues. CombBLAS also runs out
of memory for the Twitter data set and hence this data point is not
plotted. (4) GraphLab performs well for Triangle Counting, due
to data structure optimizations performed for this case, namely the

1

10

100

at
io
n
�(s
ec
on

ds
)

Pagerank�(Weak�scaling,�128M�edges/node)

Native Combblas Graphlab Socialite Giraph

0.1

1

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(a) PageRank

10

100

1000

ti
m
e�
(s
ec
on

ds
)

BFS�(Weak�scaling,�128M�undirected�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1

1 2 4 8 16 32 64

O
ve
ra
ll�

Number�of�nodes
(b) Breadth-First Search

100

1000

10000

at
io
n
�(s
ec
on

ds
)

Collaborative�Filtering�(Weak�scaling,�250�M�edges/node)

Native Combblas Graphlab Socialite Giraph

1

10

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(c) Collaborative Filtering

10

100

1000

m
e�
(s
ec
on

ds
)

Triangle�Counting�(Weak�scaling,�32M�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1
1 2 4 8 16 32 64O

ve
ra
ll�
Ti
m

Number�of�nodes
(d) Triangle Counting

Figure 4: Performance results for different algorithms on large scale
synthetic graphs. The y-axis represents runtime in log-scale. We per-
form weak-scaling, where the amount of graph data per node is kept
constant, (a) 128 M edges/node for pagerank, (b) 128 M edges/node for
BFS, (c) 256M ratings/node for SGD, and (d) 32M edges/node for tri-
angle counting. Horizontal lines represent perfect scaling.
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Becoming The King 

• Like Arthur, MPI benefited from 
the wisdom of (more than one) 
Wizard 

• And like Arthur, there are many 
lessons for all of us in how MPI 
became King 
♦ Especially for those that aspire to 

rule… 
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Why Was MPI Successful? 

•  It addresses all of the following issues: 
♦ Portability 
♦ Performance 
♦ Simplicity and Symmetry 
♦ Modularity 
♦ Composability 
♦ Completeness 

•  For a more complete discussion, see 
“Learning from the Success of MPI”, 
http://wgropp.cs.illinois.edu/bib/
papers/pdata/2001/mpi-lessons.pdf 
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Portability and Performance 

•  Portability does not require a “lowest common denominator” 
approach 
♦  Good design allows the use of special, performance 

enhancing features without requiring hardware support 
♦  For example, MPI’s nonblocking message-passing 

semantics allows but does not require “zero-copy” data 
transfers 

•  MPI is really a “Greatest Common Denominator” approach 
♦  It is a “common denominator” approach; this is portability 

•  To fix this, you need to change the hardware (change 
“common”) 

♦  It is a (nearly) greatest approach in that, within the design 
space (which includes a library-based approach), changes 
don’t improve the approach 

•  Least suggests that it will be easy to improve; by 
definition, any change would improve it. 

•  Have a suggestion that meets the requirements?  Lets 
talk! 
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Simplicity 

•  MPI is organized around a small number 
of concepts 
♦ The number of routines is not a good 

measure of complexity 
♦ E.g., Fortran 

•  Large number of intrinsic functions 
♦ C/C++ and Java runtimes are large 
♦ Development Frameworks 

• Hundreds to thousands of methods 
♦ This doesn’t bother millions of programmers 
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Symmetry 

•  Exceptions are hard on users 
♦  But easy on implementers — less to implement and test 

•  Example: MPI_Issend 
♦  MPI provides several send modes: 

•  Regular 
•  Synchronous 
•  Receiver Ready 
•  Buffered 

♦  Each send can be blocking or non-blocking 
♦  MPI provides all combinations (symmetry), including the 
“Nonblocking Synchronous Send” 

•  Removing this would slightly simplify implementations 
•  Now users need to remember which routines are 

provided, rather than only the concepts 
♦  It turns out that MPI_Issend is useful in building 

performance and correctness debugging tools for MPI 
programs 
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Modularity 

• Modern algorithms are hierarchical 
♦ Do not assume that all operations 

involve all or only one process 
♦ Provide tools that don’t limit the user 

• Modern software is built from 
components 
♦ MPI designed to support libraries 
♦ Example: communication contexts 
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Composability 

•  Environments are built from 
components 
♦ Compilers, libraries, runtime systems 
♦ MPI designed to “play well with others”* 

•  MPI exploits newest advancements in 
compilers 
♦ … without ever talking to compiler writers 
♦ OpenMP is an example 

• MPI (the standard) required no changes to work 
with OpenMP 

♦ OpenACC, OpenCL newer examples 
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Completeness 

•  MPI provides a complete parallel 
programming model and avoids 
simplifications that limit the model 
♦ Contrast: Models that require that 

synchronization only occurs collectively for 
all processes or tasks 

•  Make sure that the functionality is there 
when the user needs it 
♦ Don’t force the user to start over with a 

new programming model when a new 
feature is needed 
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The Pretenders 

• Many have tried to claim the 
mantel of MPI 

• Why have they failed? 
♦ They failed to respect one or more of 

the requirements for success 
• What are the real issues in 

improving parallel programming? 
♦ I.e., what should the challengers try 

to accomplish? 
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Improving Parallel 
Programming 

•  How can we make the programming of real 
applications easier? 

•  Problems with the Message-Passing Model 
♦  User’s responsibility for data decomposition 
♦  “Action at a distance” 

•  Matching sends and receives 
•  Remote memory access 

♦  Performance costs of a library (no compile-time 
optimizations) 

♦  Need to choose a particular set of calls to match the 
hardware 

•  In summary, the lack of abstractions that 
match the applications 
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Challenges 

•  Must avoid the traps:  
♦  The challenge is not to make easy programs easier.  

The challenge is to make hard programs possible. 
♦  We need a “well-posedness” concept for 

programming tasks 
•  Small changes in the requirements should only require 

small changes in the code 
•  Rarely a property of “high productivity” languages 

-  Abstractions that make easy programs easier don’t solve 
the problem 

♦  Latency hiding is not the same as low latency 
•  Need “Support for aggregate operations on large 

collections” 
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Challenges 

•  An even harder challenge: make it hard to 
write incorrect programs. 
♦  OpenMP is not a step in the (entirely) right direction 
♦  In general, most legacy shared memory 

programming models are very dangerous. 
•  They also perform action at a distance 
•  They require a kind of user-managed data 

decomposition to preserve performance without the 
cost of locks/memory atomic operations 

♦  Deterministic algorithms should have provably 
deterministic implementations 

•  “Data race free” programming, the approach taken in 
Java and C++, is in this direction, and a response to 
the dangers in ad hoc shared memory programming  
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What is Needed To Achieve Real 
High Productivity Programming 

•  Simplify the construction of correct, high-performance 
applications 

•  Managing Data Decompositions 
♦  Necessary for both parallel and uniprocessor applications 
♦  Many levels must be managed 
♦  Strong dependence on problem domain (e.g., halos, load-

balanced decompositions, dynamic vs. static) 
•  Possible approaches 

♦  Language-based 
•  Limited by predefined decompositions 
-  Some are more powerful than others; Divacon 

provided a built-in divided and conquer 
♦  Library-based 

•  Overhead of library (incl. lack of compile-time 
optimizations), tradeoffs between number of routines, 
performance, and generality 

♦  Domain-specific languages … 
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“Domain-specific” languages 

•  (First – think abstract data-structure specific, not science domain) 
•  A possible solution, particularly when mixed with adaptable 

runtimes 
•  Exploit composition of software (e.g., work with existing compilers, 

don’t try to duplicate/replace them) 
•  Example: mesh handling 

♦  Standard rules can define mesh 
•  Including “new” meshes, such as C-grids  

♦  Alternate mappings easily applied (e.g., Morton orderings) 
♦  Careful source-to-source methods can preserve human-

readable code 
♦  In the longer term, debuggers could learn to handle programs 

built with language composition (they already handle 2 
languages – assembly and C/Fortran/…) 

•  Provides a single “user abstraction” whose implementation may 
use the composition of hierarchical models 
♦  Also provides a good way to integrate performance engineering 

into the application 
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Enhancing Existing 
Languages 

•  Embedded DSLs are one way to extend 
languages 

•  Annotations, coupled with code 
transformations is another 
♦  Follows the Beowulf philosophy – exploit 

commodity components to provide new capabilities 
♦ Approach taken by the Center for Exascale 

Simulation of Plasma-Coupled Combustion 
xpacc.illinois.edu 
•  ICE (Illinois Computing Environment) under development 

as a way to provide a framework for integrating other 
performance tools 



25 

Let The Compiler Do It 

• This is the right answer … 
♦ If only the compiler could do it 

• Lets look at one of the simplest 
operations for a single core, dense 
matrix transpose 
♦ Transpose involves only data motion; 

no floating point order to respect 
♦ Only a double loop (fewer options to 

consider) 
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Transpose Example Review 

•  do j=1,n 
    do i=1,n 
        b(i,j) = a(j,i) 
    enddo 
enddo 

•  No temporal locality 
(data used once) 

•  Spatial locality only if 
(words/cacheline) * 
n fits in cache 

•  Performance 
plummets when 
matrices no longer fit 
in cache 
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Blocking for cache helps 

• do jj=1,n,stridej     
    do ii=1,n,stridei 
        do j=jj,min(n,jj+stridej-1) 
            do i=ii,min(n,ii+stridei-1) 
                b(i,j) = a(j,i) 

• Good choices of stridei and stridej 
can improve performance by a 
factor of 5 or more 

• But what are the choices of stridei 
and stridej? 
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Results: Macbook O1 
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Results: Macbook O3 
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Results: Blue Waters O1 
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Results: Blue Waters O3 
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Compilers Can’t Do It All 

•  Even for very simple operations, the number 
of choices that a compiler faces for generating 
good code can overwhelm the optimizer 

•  Guidance by a human expert is required 
♦  The programming system must not get in the way of 

the expert 
♦  The programming system should make it easy to 

automate tasks under direction of an expert 

•  Also note that single code performance 
portability still not possible 
♦  Just because it is desirable doesn’t make it 

a reasonable goal 
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The Challenges 

• Times are changing; MPI is old (for 
a programming system) 

• Can MPI remain relevant? 
♦ For its core constituency? 
♦ For new (to MPI) and emerging 

applications? 
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Weaknesses of MPI 

•  MPI 
♦ Distributed Memory.  No built-in support for 

user-distributions 
• Darray and Subarray don’t count 

♦ No built-in support for dynamic execution 
•  But note dynamic execution easily implemented 

in MPI 
♦ Performance cost of interfaces; overhead of 

calls; rigidity of choice of functionality 
♦  I/O is capable but hard to use 

• Way better than POSIX, but rarely implemented 
well, in part because HPC systems make the 
mistake of insisting on POSIX 



35 

Strengths of MPI 

•  MPI 
♦ Ubiquity 
♦ Distributed memory provides scalability, 

reliability, bounds complexity (that MPI 
implementation must manage) 
• Does not stand in the way of user distributions, 

dynamic execution 
♦  Leverages other technologies 

• HW, compilers, incl OpenMP/OpenACC 

♦ Process-oriented memory model encourages 
and provides mechanisms for performance 
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To Improve on MPI 

•  Add what is missing: 
♦  Distributed data structures (that the user needs) 

•  This is what most parallel programming “DSL”s really provide 
♦  Low overhead (node)remote operations 

•  MPI-3 RMA a start, but could be lower overhead if compiled in, handled 
in hardware, consistent with other data transports 

♦  Dynamic load balancing 
•  MPI-3 shared memory; MPI+X; AMPI all workable solutions but could 

be improved 
•  Biggest change still needs to be made by applications – must abandon 

the part of the execution model that guarantees predictable 
performance 

♦  Resource coordination with other programming systems 
•  See strength – leverage is also a weakness if the parts don’t work well 

together 
♦  Lower latency implementation 

•  Essential to productivity – reduces the “grain size” or degree of 
aggregation that the programmer must provide 

•  We need to bring back n1/2 
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The Future King 

• MPI remains effective as an 
internode programming system 
♦ Productivity gains come from writing 

libraries and frameworks on top of 
MPI 
• This was the original intention of the MPI 

Forum 

• The real challenge will be in 
intranode programming… 
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Likely Exascale Architectures 

•  From “Abstract Machine Models and Proxy 
Architectures for Exascale Computing Rev 1.1,” J 
Ang et al 

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Note: not fully cache 
coherent 
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Another Pre-Exascale 
Architecture 
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Most Predict Heterogeneous 
Systems for both Ops and Memory 

 
CFD Vision 2030 Study: A Path To Revolutionary Computational Aerosciences 49 
 

between 16 to 32 exaFLOPS may be achievable by 2030. 
Note that there are many assumptions in this estimate, and 
many yet unsolved engineering problems must be overcome 
to maintain the targets in the ITRS roadmap. In addition, we 
have assumed lower clock rates in the stream and processor-
in-memory elements, reflecting a different optimization point 
for speed and energy use. 

It is important to note that these predictions are sensitive to a 
number of hard-to-forecast values. For example, energy and 
power dissipation problems could reduce the number of pro-
cessing units that can be assembled into a single system, re-
ducing total performance.5 Conversely, new 3D fabrication 
and packaging could increase the density of components, 
allowing even greater parallelism. The major conclusion that 
should be drawn from this table is that current trends will 
yield significantly faster systems than we have today, but not 
ones that are as fast as the past 20 years of development 
would suggest.  

Another important feature of an HPC system in this time 
frame we expect to see are even more levels of memory than 
we currently have. Current systems have up to three levels of 
cache, and then main memory. Systems with accelerators 
have additional memory attached to the accelerator. In 2030, 
main memory itself might be composed of different levels, 
with portions being very fast, but small, and other portions 
larger and slower. Combined with the concept of processing 
in memory, that is, having some computing capability em-
bedded within the memory subsystem, this will lead to an 
even more complex overall system. 

Programming a 2030 HPC system 
Software has a much longer lifespan than hardware, and as 
pointed out earlier, the expectation is that there will be only 
evolutionary changes to the programming model in the 2020-
2023 timeframe. For 2030, the likelihood that some major, 
revolutionary changes to the programming models will occur 
is higher because of the extra development time. It is im-
portant to point out that this is not a guarantee, as many pro-
gramming languages and models have shown a surprising 
level of sustainability. In addition, as we pointed out in the 
discussion on the validity of petascale projections, software 

advances are much tougher to predict than hardware advanc-
es. 

Future programming models will be driven by dealing with 
locality, whether they are new or extensions of existing pro-
gramming models. Programmers need to be able to express 
locality and relationships between data abstractly. NVIDIA’s 
CUDA programming language is an example of a newer 
programming model that forces programmers to deal directly 
and explicitly with locality. This illustrates the need for the 
expression of locality while also showcasing the need for 
ways to express this information about locality more abstract-
ly and portable. 

As discussed above, we pointed out that the memory system 
will probably become much more complex, both with the 
introduction of processing in memory (PIM) as well as with 
more levels of memory architectures. While some of this 
complexity will be hidden from the developers, a lot of it will 
not. The developers need to be able to express what compu-
ting should be done by the slower processing elements inside 
the memory subsystem, and what needs to be done by the 
fast scalar processor or the streaming elements. The pro-
cessing elements within the memory subsystem will have 
significantly higher bandwidth to memory. One of the easiest 
uses to imagine of this processing is to perform calculations 
for prefetching of data (gather), and scatter the results of cal-
culations back into the final locations in the memory subsys-
tem. Because of the processing power and bandwidth envi-
sioned in the memory subsystems, these can be significantly 
more complex than possible within the processors, which 
will be especially useful for software with complex memory 
access patterns, for example, unstructured CFD codes. 

We do not believe that there will ever be a programming 
model that completely hides the complexity of the underlying 
HPC system from the programmer while achieving the nec-
essary performance. Nevertheless, we do think that great 
advances can be made to allow the programmer better to 
express her or his intent and to provide guidance to the com-
piler, runtime system, operating system, and even the under-
lying hardware. This will require significant research and that 

Table 1.  Estimated Performance for Leadership-class Systems 

Year 
Feature 

size 
Derived 

parallelism 
Stream 

parallelism 
PIM paral-

lelism 

Clock 
rate 
GHz FMAs 

GFLOPS 
(Scalar) 

GFLOPS 
(Stream) 

GFLOPS 
(PIM) 

Processor 
per node 

Node 
(TFLOP) 

Nodes 
per 

system 
Total 

(PFLOPS) 
2012 22 16 512 0 2 2 128 1,024 0 2 1 10,000 23 

2020 12 54 1,721 0 2.8 4 1,210 4,819 0 2 6 20,000 241 

2023 8 122 3,873 512 3.1 4 3,026 12,006 1,587 4 17 20,000 1,330 

2030 4 486 15,489 1,024 4 8 31,104 61,956 8,192 16 101 20,000 32,401 

Feature size is the size of a logic gate in a semiconductor, in nanometers. Derived parallelism is the amount of concurrency, given processor cores with a 

constant number of components, on a semiconductor chip of fixed size. Stream and PIM parallelism are the number of specialized processor cores for 

stream and processor-in-memory processing, respectively. FMA is the number of floating-point multiply-add units available to each processor core. From 

these values, the performance in GigaFLOPS is computed for each processor and node, as well as the total peak performance of a leadership-scale system. 

Another estimate, from “CFD Vision 2030 Study: 
A Path to Revolutionary Computational Aerosciences,” Slotnick et 
al, 2013 
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What This (might) Mean for 
MPI 

• Lots of innovation in the processor 
and the node 

• More complex memory hierarchy; 
no chip-wide cache coherence 

• Tightly integrated NIC 
• Execution model becoming more 

complex 
♦ Achieving performance, reliability 

targets requires exploiting new 
features 
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What This (might) Mean for 
Applications  

•  Weak scaling limits the range of problems 
♦  Latency may be critical (also, some applications 

nearing limits of spatial parallelism) 
•  Rich execution model makes performance 

portability unrealistic 
♦  Applications will need to be flexible with both their 

use of abstractions and their implementation of 
those abstractions 

•  Programmers will need help with performance 
issues, whatever parallel programming system 
is used 
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MPI is not a BSP system 

•  BSP = Bulk Synchronous Programming 
♦  Programmers like the BSP model, adopting it even 

when not necessary (see FIB) 
♦  Unlike most programming models, designed with a 

performance model to encourage quantitative design 
in programs 

•  MPI makes it easy to emulate a BSP system 
♦  Rich set of collectives, barriers, blocking operations 

•  MPI (even MPI-1) sufficient for dynamic 
adaptive programming 
♦  The main issues are performance and “progress” 
♦  Improving implementations and better HW support 

for integrated CPU/NIC coordination the answer 
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MPI+X 

•  Many reasons to consider MPI+X 
♦ Major: We always have:  

• MPI+C, MPI+Fortran 
♦ Both C11 and Fortran include support of 

parallelism (shared and distributed memory) 
•  Abstract execution models becoming 

more complex 
♦ Experience has shown that the programmer 

must be given some access to performance 
features 

♦ Options are (a) add support to MPI and (b) let 
X support some aspects 
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X = MPI (or X = ϕ) 

•  MPI 3.0 features esp. important for 
Exascale 
♦ Generalize collectives to encourage post 

BSP programming: 
• Nonblocking collectives 
• Neighbor - including nonblocking - collectives 

♦ Enhanced one-sided (recall AMM targets) 
•  Precisely specified (see “Remote Memory Access 

Programming in MPI=3,” Hoefler et at, in ACM 
TOPC) 

• Many more operations including RMW 

♦ Enhanced thread safety 
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X = Programming with Threads 

• Many choices, different user 
targets and performance goals 
♦ Libraries: Pthreads, TBB 
♦ Languages: OpenMP 4, C11/C++11 

• C11 provides an adequate (and 
thus complex) memory model to 
write portable thread code 
♦ Also needed for MPI-3 shared 

memory 
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What are the Issues? 

•  Isn’t the beauty of MPI + X that 
MPI and X can be learned (by 
users) and implemented (by 
developers) independently? 
♦ Yes (sort of) for users 
♦ No for developers 

• MPI and X must either partition or 
share resources 
♦ User must not blindly oversubscribe 
♦ Developers must negotiate 
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More Effort needed on the “+” 

• MPI+X won’t be enough for Exascale if 
the work for “+” is not done very well 
♦ Some of this may be language 

specification: 
• User-provided guidance on resource 

allocation, e.g., MPI_Info hints; thread-based 
endpoints 

♦ Some is developer-level standardization 
• A simple example is the MPI ABI specification 

– users should ignore but benefit from 
developers supporting 
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Some Resources to Negotiate 

•  CPU resources 
♦  Threads and contexts 
♦  Cores (incl placement) 
♦  Cache 

•  Memory resources 
♦  Prefetch, outstanding 

load/stores 
♦  Pinned pages or 

equivalent NIC needs 
♦  Transactional memory 

regions 
♦  Memory use (buffers) 

•  NIC resources 
♦  Collective groups 
♦  Routes 
♦  Power 

•  OS resources 
♦  Synchronization 

hardware 
♦  Scheduling 
♦  Virtual memory 

MPI has already led the way in defining interlanguage compatibility, 
application binary interfaces, and resource manager/program 
interfaces  
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Summary 

•  MPI remains the dominant system for 
massively parallel HPC because of its greatest 
common denominator approach and precisely 
defined programming models 

•  And because it doesn’t pretend to solve the 
really hard problem – general locality 
management and general intranode 
programming 

•  MPI is currently the internode programming 
system planned for the next two generations 
of US supercomputers 
♦  And some argue for making it key to the intranode 

programming, leaving single core to the language/
compiler 
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Thanks! 


