
MPI: The Once and
Future King

William Gropp
wgropp.cs.illinois.edu

2

MPI The King

• MPI remains the dominant
programming model for massively
parallel computing in the sciences
♦ Careful design filled a gap
♦ Good and ubiquitous implementations

provide reliable performance
♦ Applications developers found it

(relatively) easy to use

3

MPI and MPICH Timeline

90! 91! 92! 93! 94! 95! 96! 97! 98! 99! 00! 01! 02! 03! 04! 05! 06! 07! 08! 09! 10! 11!

P4,
Chameleon!
!
!

MPI-1
Standard!
!
!

MPICH-1
Released!
!
!

MPI on
1M Cores!
!
!

MPI-2
Standard!
!
!

Verification!
!
!

Scalable
Trace Files!
!
!

!
!
!

Fault
Tolerance!

!
!

!
!

12! 13!

MPI-3 !
Standard!MPICH2

Released!
!
!

Hybrid Programming!

Multithreading!
MPI-IO apps!

MPICH 3.0
Released!
!
!

Performance research!

Proc Mgmt
Software!

!
!

I/O !
Algorithms!

!
!

14!

4

Where Is MPI Today?

• Applications already running at
large scale:
System Cores
Tianhe-2 3,120,000 (most in Phi)
Sequoia 1,572,864
Blue Waters 792,064* + 1/6 acc
Mira 786,432
K computer 705,024
Julich BG/Q 393,216
Titan 299,008* + acc

* 2 cores share a wide FP unit

5

Science that can’t be done in any
other way

•  Plasma simulations – W. Mori
(UCLA)

•  High sustained floating point
performance needed
♦ 150 million grid points and 300 million

particles
♦ (2 cm)3 of plasma

6

Science that can’t be done in any
other way

•  Turbulent Stellar Hydrodynamics –
P. Woodward (UMN)
♦ Sustained 1 PF/s computing for weeks
♦ Back to back full system jobs.

•  Transistor roadmap projections
– G. Klimeck (Purdue)
♦ Support for CPU/GPU codes.

7

Science that can’t be done in any
other way

•  Earthquake response modeling – T. Jordan
(USC)
♦  CyberShake workloads using CPU and GPU

nodes, sustained, for weeks.
♦  Seismic hazard maps (NSHMP) and building

codes.

•  Severe storm modeling – B. Wilhelmson
(Illinois)
♦  First-of-its-kind, 3-D simulation of a

long-track EF5 tornado.

8

Science that can’t be done in any
other way

•  Nek5000 – P. Fischer (Illinois)
♦  Computational fluid dynamics, heat transfer, and combustion.
♦  Strong scales to over a million MPI ranks.

8
IC engine intake stroke; G. Giannakopoulos, ETHZ Nek5000 Strong-Scaling Study on Mira.

9

MPI is not only for Scientific
Computing

and is close to native performance (geometric mean of 1.1-1.2X
for pagerank, BFS and collaborative filtering, and 2.5X for triangle
counting). (3) Giraph, on the other hand, is 2-3 orders of magnitude
slower than native code (4) CombBLAS and GraphLab perform
well on average. CombBLAS is very good for all algorithms except
for Triangle Counting, where it ran out of memory for real-world
inputs while computing the A2 matrix product. This is an express-
ibility problem in CombBLAS. GraphLab is 3-9X off from native
code, but performs reasonably consistently across algorithms. (5)
SociaLite performance is typically comparable to GraphLab (some-
times slightly better and sometimes slightly worse).

Finally, note that the trends on the synthetic dataset are in line
with real-world data, showing that our synthetic generators are ef-
fective in modeling real-world data.

5.3 Multi node results
We first show our scaling results of our frameworks on multiple

nodes. A major reason for using multiple nodes to process graph
data is to store the data in memory across the nodes. Hence a com-
mon use case is weak-scaling, where the data per node is kept con-
stant (and hence total data set size increases with number of nodes).
If we obtain perfect performance scaling, then the runtime should
be constant as we increase node count and data set size. In this
study, we include CombBLAS, GraphLab, SociaLite and Giraph
frameworks. Galois is currently only a single node framework and
we hence do not include results here.

Figures 4(a), 4(b), 4(c) and 4(d) show the results of multi node
runs on synthetically generated data sets for our benchmarks. The
data sizes are chosen so that all frameworks could complete without
running out of memory. Figure 5 shows the corresponding perfor-
mance results for larger real-world graphs. We run each algorithm
using one large dataset – we use the Twitter dataset [20] for Pager-
ank, BFS and Triangle Counting and the Yahoo Music KDDCup
dataset 2011 dataset for Collaborative Filtering [7].

Algorithm CombBLAS GraphLab SociaLite Giraph
PageRank 2.5 12.1 7.9 74.4

BFS 7.1 29.5 18.9 494.3
Coll. Filtering 3.5 7.1 7.0 87.9

Triangle Count. 13.1 3.6 1.5 54.4

Table 6: Summary of performance differences for multi node bench-
marks on different frameworks. Each entry is a slowdown factor from
native code, hence lower numbers indicate better performance.

As a convenient summary of performance, Table 6 shows the
geometric mean of the performance differences between our frame-
works combining real-world and synthetic datasets at different scales.
The table shows performance slowdowns of different frameworks
for specific algorithms compared to the native code for that algo-
rithm – hence lower numbers are better.

We note the following trends in our multi-node results. (1) There
is wide variability in our multi node results; as an example, na-
tive code performs anywhere between 2X to more than 560X better
than other frameworks on multi node runs (still up to 30X discount-
ing Giraph runtimes). (2) Giraph performs worse by far than other
frameworks and is frequently 2-3 orders magnitude off from na-
tive performance. (3) CombBLAS is competitive for Pagerank (ge-
omean of 2.5X native performance), BFS (7.1X off native) and Col-
laborative Filtering (3.5X off native). However, it performs poorly
on Triangle Counting due to extra computations performed as a re-
sult of framework expressibility issues. CombBLAS also runs out
of memory for the Twitter data set and hence this data point is not
plotted. (4) GraphLab performs well for Triangle Counting, due
to data structure optimizations performed for this case, namely the

1

10

100

at
io
n
�(s
ec
on

ds
)

Pagerank�(Weak�scaling,�128M�edges/node)

Native Combblas Graphlab Socialite Giraph

0.1

1

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(a) PageRank

10

100

1000

ti
m
e�
(s
ec
on

ds
)

BFS�(Weak�scaling,�128M�undirected�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1

1 2 4 8 16 32 64

O
ve
ra
ll�

Number�of�nodes
(b) Breadth-First Search

100

1000

10000

at
io
n
�(s
ec
on

ds
)

Collaborative�Filtering�(Weak�scaling,�250�M�edges/node)

Native Combblas Graphlab Socialite Giraph

1

10

1 2 4 8 16 32 64

Ti
m
e�
pe

r�
it
er
a

Number�of�nodes
(c) Collaborative Filtering

10

100

1000

m
e�
(s
ec
on

ds
)

Triangle�Counting�(Weak�scaling,�32M�edges/node)

Native Combblas Graphlab Socialite Giraph

0

1
1 2 4 8 16 32 64O

ve
ra
ll�
Ti
m

Number�of�nodes
(d) Triangle Counting

Figure 4: Performance results for different algorithms on large scale
synthetic graphs. The y-axis represents runtime in log-scale. We per-
form weak-scaling, where the amount of graph data per node is kept
constant, (a) 128 M edges/node for pagerank, (b) 128 M edges/node for
BFS, (c) 256M ratings/node for SGD, and (d) 32M edges/node for tri-
angle counting. Horizontal lines represent perfect scaling.

986

Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets
Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park,
M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey

Factor of
100!

MPI

10

Becoming The King

• Like Arthur, MPI benefited from
the wisdom of (more than one)
Wizard

• And like Arthur, there are many
lessons for all of us in how MPI
became King
♦ Especially for those that aspire to

rule…

11

Why Was MPI Successful?

•  It addresses all of the following issues:
♦ Portability
♦ Performance
♦ Simplicity and Symmetry
♦ Modularity
♦ Composability
♦ Completeness

•  For a more complete discussion, see
“Learning from the Success of MPI”,
http://wgropp.cs.illinois.edu/bib/
papers/pdata/2001/mpi-lessons.pdf

12

Portability and Performance

•  Portability does not require a “lowest common denominator”
approach
♦  Good design allows the use of special, performance

enhancing features without requiring hardware support
♦  For example, MPI’s nonblocking message-passing

semantics allows but does not require “zero-copy” data
transfers

•  MPI is really a “Greatest Common Denominator” approach
♦  It is a “common denominator” approach; this is portability

•  To fix this, you need to change the hardware (change
“common”)

♦  It is a (nearly) greatest approach in that, within the design
space (which includes a library-based approach), changes
don’t improve the approach

•  Least suggests that it will be easy to improve; by
definition, any change would improve it.

•  Have a suggestion that meets the requirements? Lets
talk!

13

Simplicity

•  MPI is organized around a small number
of concepts
♦ The number of routines is not a good

measure of complexity
♦ E.g., Fortran

•  Large number of intrinsic functions
♦ C/C++ and Java runtimes are large
♦ Development Frameworks

• Hundreds to thousands of methods
♦ This doesn’t bother millions of programmers

14

Symmetry

•  Exceptions are hard on users
♦  But easy on implementers — less to implement and test

•  Example: MPI_Issend
♦  MPI provides several send modes:

•  Regular
•  Synchronous
•  Receiver Ready
•  Buffered

♦  Each send can be blocking or non-blocking
♦  MPI provides all combinations (symmetry), including the
“Nonblocking Synchronous Send”

•  Removing this would slightly simplify implementations
•  Now users need to remember which routines are

provided, rather than only the concepts
♦  It turns out that MPI_Issend is useful in building

performance and correctness debugging tools for MPI
programs

15

Modularity

• Modern algorithms are hierarchical
♦ Do not assume that all operations

involve all or only one process
♦ Provide tools that don’t limit the user

• Modern software is built from
components
♦ MPI designed to support libraries
♦ Example: communication contexts

16

Composability

•  Environments are built from
components
♦ Compilers, libraries, runtime systems
♦ MPI designed to “play well with others”*

•  MPI exploits newest advancements in
compilers
♦ … without ever talking to compiler writers
♦ OpenMP is an example

• MPI (the standard) required no changes to work
with OpenMP

♦ OpenACC, OpenCL newer examples

17

Completeness

•  MPI provides a complete parallel
programming model and avoids
simplifications that limit the model
♦ Contrast: Models that require that

synchronization only occurs collectively for
all processes or tasks

•  Make sure that the functionality is there
when the user needs it
♦ Don’t force the user to start over with a

new programming model when a new
feature is needed

18

The Pretenders

• Many have tried to claim the
mantel of MPI

• Why have they failed?
♦ They failed to respect one or more of

the requirements for success
• What are the real issues in

improving parallel programming?
♦ I.e., what should the challengers try

to accomplish?

19

Improving Parallel
Programming

•  How can we make the programming of real
applications easier?

•  Problems with the Message-Passing Model
♦  User’s responsibility for data decomposition
♦  “Action at a distance”

•  Matching sends and receives
•  Remote memory access

♦  Performance costs of a library (no compile-time
optimizations)

♦  Need to choose a particular set of calls to match the
hardware

•  In summary, the lack of abstractions that
match the applications

20

Challenges

•  Must avoid the traps:
♦  The challenge is not to make easy programs easier.

The challenge is to make hard programs possible.
♦  We need a “well-posedness” concept for

programming tasks
•  Small changes in the requirements should only require

small changes in the code
•  Rarely a property of “high productivity” languages

-  Abstractions that make easy programs easier don’t solve
the problem

♦  Latency hiding is not the same as low latency
•  Need “Support for aggregate operations on large

collections”

21

Challenges

•  An even harder challenge: make it hard to
write incorrect programs.
♦  OpenMP is not a step in the (entirely) right direction
♦  In general, most legacy shared memory

programming models are very dangerous.
•  They also perform action at a distance
•  They require a kind of user-managed data

decomposition to preserve performance without the
cost of locks/memory atomic operations

♦  Deterministic algorithms should have provably
deterministic implementations

•  “Data race free” programming, the approach taken in
Java and C++, is in this direction, and a response to
the dangers in ad hoc shared memory programming

22

What is Needed To Achieve Real
High Productivity Programming

•  Simplify the construction of correct, high-performance
applications

•  Managing Data Decompositions
♦  Necessary for both parallel and uniprocessor applications
♦  Many levels must be managed
♦  Strong dependence on problem domain (e.g., halos, load-

balanced decompositions, dynamic vs. static)
•  Possible approaches

♦  Language-based
•  Limited by predefined decompositions
-  Some are more powerful than others; Divacon

provided a built-in divided and conquer
♦  Library-based

•  Overhead of library (incl. lack of compile-time
optimizations), tradeoffs between number of routines,
performance, and generality

♦  Domain-specific languages …

23

“Domain-specific” languages

•  (First – think abstract data-structure specific, not science domain)
•  A possible solution, particularly when mixed with adaptable

runtimes
•  Exploit composition of software (e.g., work with existing compilers,

don’t try to duplicate/replace them)
•  Example: mesh handling

♦  Standard rules can define mesh
•  Including “new” meshes, such as C-grids

♦  Alternate mappings easily applied (e.g., Morton orderings)
♦  Careful source-to-source methods can preserve human-

readable code
♦  In the longer term, debuggers could learn to handle programs

built with language composition (they already handle 2
languages – assembly and C/Fortran/…)

•  Provides a single “user abstraction” whose implementation may
use the composition of hierarchical models
♦  Also provides a good way to integrate performance engineering

into the application

24

Enhancing Existing
Languages

•  Embedded DSLs are one way to extend
languages

•  Annotations, coupled with code
transformations is another
♦  Follows the Beowulf philosophy – exploit

commodity components to provide new capabilities
♦ Approach taken by the Center for Exascale

Simulation of Plasma-Coupled Combustion
xpacc.illinois.edu
•  ICE (Illinois Computing Environment) under development

as a way to provide a framework for integrating other
performance tools

25

Let The Compiler Do It

• This is the right answer …
♦ If only the compiler could do it

• Lets look at one of the simplest
operations for a single core, dense
matrix transpose
♦ Transpose involves only data motion;

no floating point order to respect
♦ Only a double loop (fewer options to

consider)

26

Transpose Example Review

•  do j=1,n
 do i=1,n
 b(i,j) = a(j,i)
 enddo
enddo

•  No temporal locality
(data used once)

•  Spatial locality only if
(words/cacheline) *
n fits in cache

•  Performance
plummets when
matrices no longer fit
in cache

27

Blocking for cache helps

• do jj=1,n,stridej
 do ii=1,n,stridei
 do j=jj,min(n,jj+stridej-1)
 do i=ii,min(n,ii+stridei-1)
 b(i,j) = a(j,i)

• Good choices of stridei and stridej
can improve performance by a
factor of 5 or more

• But what are the choices of stridei
and stridej?

28

Results: Macbook O1

1 2 3 4 5 6 7 8 9

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9

3000-3500

2500-3000

2000-2500

1500-2000

1000-1500

500-1000

0-500

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

3000-4
000
2000-3
000
1000-2
000
0-1000

29

Results: Macbook O3

1 2 3 4 5 6 7 8 9

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9

3000-3500

2500-3000

2000-2500

1500-2000

1000-1500

500-1000

0-500
Series1

Series2

Series3

Series4

Series5

Series6

Series7

Series8

Series9

1 2 3 4 5 6 7 8 9

3000-4000

2000-3000

1000-2000

0-1000

30

Results: Blue Waters O1

1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9

1600-1800

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200 1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1500-2000

1000-1500

500-1000

0-500

31

Results: Blue Waters O3

1 2 3 4 5 6 7 8 9

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9

1800-2000

1600-1800

1400-1600

1200-1400

1000-1200

800-1000

600-800

400-600

200-400

0-200
1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

1500-2000

1000-1500

500-1000

0-500

Simple, unblocked code
compiled with O3 – 709MB/s

32

Compilers Can’t Do It All

•  Even for very simple operations, the number
of choices that a compiler faces for generating
good code can overwhelm the optimizer

•  Guidance by a human expert is required
♦  The programming system must not get in the way of

the expert
♦  The programming system should make it easy to

automate tasks under direction of an expert

•  Also note that single code performance
portability still not possible
♦  Just because it is desirable doesn’t make it

a reasonable goal

33

The Challenges

• Times are changing; MPI is old (for
a programming system)

• Can MPI remain relevant?
♦ For its core constituency?
♦ For new (to MPI) and emerging

applications?

34

Weaknesses of MPI

•  MPI
♦ Distributed Memory. No built-in support for

user-distributions
• Darray and Subarray don’t count

♦ No built-in support for dynamic execution
•  But note dynamic execution easily implemented

in MPI
♦ Performance cost of interfaces; overhead of

calls; rigidity of choice of functionality
♦  I/O is capable but hard to use

• Way better than POSIX, but rarely implemented
well, in part because HPC systems make the
mistake of insisting on POSIX

35

Strengths of MPI

•  MPI
♦ Ubiquity
♦ Distributed memory provides scalability,

reliability, bounds complexity (that MPI
implementation must manage)
• Does not stand in the way of user distributions,

dynamic execution
♦  Leverages other technologies

• HW, compilers, incl OpenMP/OpenACC

♦ Process-oriented memory model encourages
and provides mechanisms for performance

36

To Improve on MPI

•  Add what is missing:
♦  Distributed data structures (that the user needs)

•  This is what most parallel programming “DSL”s really provide
♦  Low overhead (node)remote operations

•  MPI-3 RMA a start, but could be lower overhead if compiled in, handled
in hardware, consistent with other data transports

♦  Dynamic load balancing
•  MPI-3 shared memory; MPI+X; AMPI all workable solutions but could

be improved
•  Biggest change still needs to be made by applications – must abandon

the part of the execution model that guarantees predictable
performance

♦  Resource coordination with other programming systems
•  See strength – leverage is also a weakness if the parts don’t work well

together
♦  Lower latency implementation

•  Essential to productivity – reduces the “grain size” or degree of
aggregation that the programmer must provide

•  We need to bring back n1/2

37

The Future King

• MPI remains effective as an
internode programming system
♦ Productivity gains come from writing

libraries and frameworks on top of
MPI
• This was the original intention of the MPI

Forum

• The real challenge will be in
intranode programming…

38

Likely Exascale Architectures

•  From “Abstract Machine Models and Proxy
Architectures for Exascale Computing Rev 1.1,” J
Ang et al

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache

6

Note: not fully cache
coherent

39

Another Pre-Exascale
Architecture

June 19, 2016 2

Figure 1: Core Group for Node

Figure 2: Basic Layout of a Node

Sunway
TaihuLight
•  Heterogeneous

processors
(MPE, CPE)

•  No data cache

40

Most Predict Heterogeneous
Systems for both Ops and Memory

CFD Vision 2030 Study: A Path To Revolutionary Computational Aerosciences 49

between 16 to 32 exaFLOPS may be achievable by 2030.
Note that there are many assumptions in this estimate, and
many yet unsolved engineering problems must be overcome
to maintain the targets in the ITRS roadmap. In addition, we
have assumed lower clock rates in the stream and processor-
in-memory elements, reflecting a different optimization point
for speed and energy use.

It is important to note that these predictions are sensitive to a
number of hard-to-forecast values. For example, energy and
power dissipation problems could reduce the number of pro-
cessing units that can be assembled into a single system, re-
ducing total performance.5 Conversely, new 3D fabrication
and packaging could increase the density of components,
allowing even greater parallelism. The major conclusion that
should be drawn from this table is that current trends will
yield significantly faster systems than we have today, but not
ones that are as fast as the past 20 years of development
would suggest.

Another important feature of an HPC system in this time
frame we expect to see are even more levels of memory than
we currently have. Current systems have up to three levels of
cache, and then main memory. Systems with accelerators
have additional memory attached to the accelerator. In 2030,
main memory itself might be composed of different levels,
with portions being very fast, but small, and other portions
larger and slower. Combined with the concept of processing
in memory, that is, having some computing capability em-
bedded within the memory subsystem, this will lead to an
even more complex overall system.

Programming a 2030 HPC system
Software has a much longer lifespan than hardware, and as
pointed out earlier, the expectation is that there will be only
evolutionary changes to the programming model in the 2020-
2023 timeframe. For 2030, the likelihood that some major,
revolutionary changes to the programming models will occur
is higher because of the extra development time. It is im-
portant to point out that this is not a guarantee, as many pro-
gramming languages and models have shown a surprising
level of sustainability. In addition, as we pointed out in the
discussion on the validity of petascale projections, software

advances are much tougher to predict than hardware advanc-
es.

Future programming models will be driven by dealing with
locality, whether they are new or extensions of existing pro-
gramming models. Programmers need to be able to express
locality and relationships between data abstractly. NVIDIA’s
CUDA programming language is an example of a newer
programming model that forces programmers to deal directly
and explicitly with locality. This illustrates the need for the
expression of locality while also showcasing the need for
ways to express this information about locality more abstract-
ly and portable.

As discussed above, we pointed out that the memory system
will probably become much more complex, both with the
introduction of processing in memory (PIM) as well as with
more levels of memory architectures. While some of this
complexity will be hidden from the developers, a lot of it will
not. The developers need to be able to express what compu-
ting should be done by the slower processing elements inside
the memory subsystem, and what needs to be done by the
fast scalar processor or the streaming elements. The pro-
cessing elements within the memory subsystem will have
significantly higher bandwidth to memory. One of the easiest
uses to imagine of this processing is to perform calculations
for prefetching of data (gather), and scatter the results of cal-
culations back into the final locations in the memory subsys-
tem. Because of the processing power and bandwidth envi-
sioned in the memory subsystems, these can be significantly
more complex than possible within the processors, which
will be especially useful for software with complex memory
access patterns, for example, unstructured CFD codes.

We do not believe that there will ever be a programming
model that completely hides the complexity of the underlying
HPC system from the programmer while achieving the nec-
essary performance. Nevertheless, we do think that great
advances can be made to allow the programmer better to
express her or his intent and to provide guidance to the com-
piler, runtime system, operating system, and even the under-
lying hardware. This will require significant research and that

Table 1. Estimated Performance for Leadership-class Systems

Year
Feature

size
Derived

parallelism
Stream

parallelism
PIM paral-

lelism

Clock
rate
GHz FMAs

GFLOPS
(Scalar)

GFLOPS
(Stream)

GFLOPS
(PIM)

Processor
per node

Node
(TFLOP)

Nodes
per

system
Total

(PFLOPS)
2012 22 16 512 0 2 2 128 1,024 0 2 1 10,000 23

2020 12 54 1,721 0 2.8 4 1,210 4,819 0 2 6 20,000 241

2023 8 122 3,873 512 3.1 4 3,026 12,006 1,587 4 17 20,000 1,330

2030 4 486 15,489 1,024 4 8 31,104 61,956 8,192 16 101 20,000 32,401

Feature size is the size of a logic gate in a semiconductor, in nanometers. Derived parallelism is the amount of concurrency, given processor cores with a

constant number of components, on a semiconductor chip of fixed size. Stream and PIM parallelism are the number of specialized processor cores for

stream and processor-in-memory processing, respectively. FMA is the number of floating-point multiply-add units available to each processor core. From

these values, the performance in GigaFLOPS is computed for each processor and node, as well as the total peak performance of a leadership-scale system.

Another estimate, from “CFD Vision 2030 Study:
A Path to Revolutionary Computational Aerosciences,” Slotnick et
al, 2013

41

What This (might) Mean for
MPI

• Lots of innovation in the processor
and the node

• More complex memory hierarchy;
no chip-wide cache coherence

• Tightly integrated NIC
• Execution model becoming more

complex
♦ Achieving performance, reliability

targets requires exploiting new
features

42

What This (might) Mean for
Applications

•  Weak scaling limits the range of problems
♦  Latency may be critical (also, some applications

nearing limits of spatial parallelism)
•  Rich execution model makes performance

portability unrealistic
♦  Applications will need to be flexible with both their

use of abstractions and their implementation of
those abstractions

•  Programmers will need help with performance
issues, whatever parallel programming system
is used

43

MPI is not a BSP system

•  BSP = Bulk Synchronous Programming
♦  Programmers like the BSP model, adopting it even

when not necessary (see FIB)
♦  Unlike most programming models, designed with a

performance model to encourage quantitative design
in programs

•  MPI makes it easy to emulate a BSP system
♦  Rich set of collectives, barriers, blocking operations

•  MPI (even MPI-1) sufficient for dynamic
adaptive programming
♦  The main issues are performance and “progress”
♦  Improving implementations and better HW support

for integrated CPU/NIC coordination the answer

44

MPI+X

•  Many reasons to consider MPI+X
♦ Major: We always have:

• MPI+C, MPI+Fortran
♦ Both C11 and Fortran include support of

parallelism (shared and distributed memory)
•  Abstract execution models becoming

more complex
♦ Experience has shown that the programmer

must be given some access to performance
features

♦ Options are (a) add support to MPI and (b) let
X support some aspects

45

X = MPI (or X = ϕ)

•  MPI 3.0 features esp. important for
Exascale
♦ Generalize collectives to encourage post

BSP programming:
• Nonblocking collectives
• Neighbor - including nonblocking - collectives

♦ Enhanced one-sided (recall AMM targets)
•  Precisely specified (see “Remote Memory Access

Programming in MPI=3,” Hoefler et at, in ACM
TOPC)

• Many more operations including RMW

♦ Enhanced thread safety

46

X = Programming with Threads

• Many choices, different user
targets and performance goals
♦ Libraries: Pthreads, TBB
♦ Languages: OpenMP 4, C11/C++11

• C11 provides an adequate (and
thus complex) memory model to
write portable thread code
♦ Also needed for MPI-3 shared

memory

47

What are the Issues?

•  Isn’t the beauty of MPI + X that
MPI and X can be learned (by
users) and implemented (by
developers) independently?
♦ Yes (sort of) for users
♦ No for developers

• MPI and X must either partition or
share resources
♦ User must not blindly oversubscribe
♦ Developers must negotiate

48

More Effort needed on the “+”

• MPI+X won’t be enough for Exascale if
the work for “+” is not done very well
♦ Some of this may be language

specification:
• User-provided guidance on resource

allocation, e.g., MPI_Info hints; thread-based
endpoints

♦ Some is developer-level standardization
• A simple example is the MPI ABI specification

– users should ignore but benefit from
developers supporting

49

Some Resources to Negotiate

•  CPU resources
♦  Threads and contexts
♦  Cores (incl placement)
♦  Cache

•  Memory resources
♦  Prefetch, outstanding

load/stores
♦  Pinned pages or

equivalent NIC needs
♦  Transactional memory

regions
♦  Memory use (buffers)

•  NIC resources
♦  Collective groups
♦  Routes
♦  Power

•  OS resources
♦  Synchronization

hardware
♦  Scheduling
♦  Virtual memory

MPI has already led the way in defining interlanguage compatibility,
application binary interfaces, and resource manager/program
interfaces

50

Summary

•  MPI remains the dominant system for
massively parallel HPC because of its greatest
common denominator approach and precisely
defined programming models

•  And because it doesn’t pretend to solve the
really hard problem – general locality
management and general intranode
programming

•  MPI is currently the internode programming
system planned for the next two generations
of US supercomputers
♦  And some argue for making it key to the intranode

programming, leaving single core to the language/
compiler

51

Thanks!

