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MPI The King

e MPI remains the dominant
orogramming model for massively
narallel computing in the sciences
¢ Careful design filled a gap

¢ Good and ubiquitous implementations
provide reliable performance

¢ Applications developers found it
(relatively) easy to use
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MPI and MPICH Timeline
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Where Is MPI Today?

e Applications already running at
large scale:

System  Cores
Tianhe-2 3,120,000 (most in Phi)
Sequoia 1,572,864
Blue Waters 792,064* + 1/6 acc
Mira 786,432
K computer 705,024
Julich BG/Q 393,216
Titan 299,008* + acc
][ * 2 cores share a wide FP unit
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Science that can’t be done in any
other way

 Plasma simulations — W. Mori
(UCLA)

» High sustained floating point
performance needed

¢ 150 million grid points and 300 million Eel——
particles

¢ (2 cm)3 of plasma
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Science that can’t be done in any
other way

* Turbulent Stellar Hydrodynamics —
P. Woodward (UMN)
¢ Sustained 1 PF/s computing for weeks
¢ Back to back full system jobs.

* Transistor roadmap projections
— G. Klimeck (Purdue)

¢ Support for CPU/GPU codes.

I
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Science that can’t be done in any
other way

e Earthquake response modeling - T. Jordan
(USC) .

¢ CyberShake workloads using CPU and GPU
nodes, sustained, for weeks.

¢ Seismic hazard maps (NSHMP) and building
codes.

e Severe storm modeling — B. Wilhelmson
(Illinois)
¢ First-of-its-kind, 3-D simulation of a
long-track EF5 tornado.
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Science that can’t be done in any
other way

e Nek5000 - P. Fischer (Illinois)

¢ Computational fluid dynamics, heat transfer, and combustion.
¢ Strong scales to over a million MPI ranks.
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MPI is not only for Scientific
Computing

Collaborative Filtering (Weak scaling, 250 M edges/node)

-0~ MPI Combblas —e=Graphlab =—&=Socialite -m=Giraph
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Number of nodes
Navigating the Maze of Graph Analytics Frameworks using Massive Graph Datasets

“ Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali Patwary, Jiwon Seo, Jongsoo Park,
M. Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey

5 PARALLEL@ILLINOIS

Time per iteration (seconds)

1867



Becoming The King

o | ike Arthur, MPI benefited from
the wisdom of (more than one)
Wizard

e And like Arthur, there are many
lessons for all of us in how MPI
became King

¢ Especially for those that aspire to
rule...
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Why Was MPI Successful?

e It addresses all of the following issues:
¢ Portability
¢ Performance
¢ Simplicity and Symmetry
¢ Modularity
¢ Composability
¢ Completeness

e For a more complete discussion, see
“Learning from the Success of MPI”,
http://wgropp.cs.illinois.edu/bib/

I§ papers/pdata/2001/mpi-lessons.pdf
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Portability and Performance

e Portability does not require a “lowest common denominator”
approach

¢ Good design allows the use of special, performance
enhancing features without requiring hardware support

¢ For example, MPI’ s nonblocking message-passing
semantics allows but does not require “zero-copy” data
transfers

e MPI is really a “Greatest Common Denominator” approach
¢ It s a “common denominator” approach; this is portability

e To fix this, you need to change the hardware (change
“common’)
¢ It /s a (nearly) greatest approach in that, within the design
space (which includes a library-based approach), changes
don’t improve the approach

e Least suggests that it will be easy to improve; by
definition, any change would improve it.

][ e Have a suggestion that meets the requirements? Lets
talk!
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Simplicity

e MPI is organized around a small number
of concepts

¢ The number of routines is not a good
measure of complexity

¢ E.g., Fortran
e Large number of intrinsic functions
¢ C/C++ and Java runtimes are large
¢ Development Frameworks
e Hundreds to thousands of methods
¢ This doesn’t bother millions of programmers
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Symmetry

e EXxceptions are hard on users
¢ But easy on implementers — less to implement and test
e Example: MPI_Issend
¢ MPI provides several send modes:
e Regular
e Synchronous
e Receiver Ready
e Buffered
¢ Each send can be blocking or non-blocking

¢ MPI provides all combinations (symmetry), including the
“Nonblocking Synchronous Send”

e Removing this would slightly simplify implementations

e Now users need to remember which routines are
provided, rather than only the concepts

¢ It turns out that MPI_Issend is useful in building
performance and correctness debugging tools for MPI
programs
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Modularity

e Modern algorithms are hierarchical

¢ Do not assume that all operations
involve all or only one process

¢ Provide tools that don’ t limit the user

e Modern software is built from
components

¢ MPI designed to support libraries
¢ Example: communication contexts
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Composability

e Environments are built from
components
¢ Compilers, libraries, runtime systems
¢ MPI designed to “play well with others™*

e MPI exploits nhewest advancements in
compilers
¢ ... without ever talking to compiler writers

¢ OpenMP is an example

e MPI (the standard) required no changes to work
with OpenMP

][ ¢ OpenACC, OpenCL newer examples
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Completeness

e MPI provides a complete parallel
programming model and avoids
simplifications that limit the model

¢ Contrast: Models that require that
synchronization only occurs collectively for
all processes or tasks

e Make sure that the functionality is there
when the user needs it

¢ Don’ t force the user to start over with a
new programming model when a new
][ feature is needed
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The Pretenders

e Many have tried to claim the
mantel of MPI

e Why have they failed?

¢ They failed to respect one or more of
the requirements for success

e What are the real issues in
improving parallel programming?

¢ I.e., what should the challengers try
to accomplish?

I
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Improving Parallel
Programming

e How can we make the programming of real
applications easier?

e Problems with the Message-Passing Model
¢ User’s responsibility for data decomposition

¢ “Action at a distance”
e Matching sends and receives
e Remote MeMmOory access
¢ Performance costs of a library (no compile-time
optimizations)
¢ Need to choose a particular set of calls to match the
hardware

e In summary, the lack of abstractions that
match the applications

' 9 PARALLEL@ILLINOIS
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Challenges

e Must avoid the traps:

¢ The challenge is not to make easy programs easier.
The challenge is to make hard programs possible.

¢ We need a “well-posedness” concept for
programming tasks

e Small changes in the requirements should only require
small changes in the code

e Rarely a property of “high productivity” languages

- Abstractions that make easy programs easier don’t solve
the problem

¢ Latency hiding is not the same as low latency

e Need “Support for aggregate operations on large
collections”
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Challenges

1867

e An even harder challenge: make it hard to
write incorrect programs.
¢ OpenMP is not a step in the (entirely) right direction
¢ In general, most legacy shared memory
programming models are very dangerous.
e They also perform action at a distance

e They require a kind of user-managed data
decomposition to preserve performance without the
cost of locks/memory atomic operations

¢ Deterministic algorithms should have provably
deterministic implementations

e "Data race free” programming, the approach taken in

Java and C++, is in this direction, and a response to
the dangers in ad hoc shared memory programming
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What is Needed To Achieve Real
High Productivity Programming

e Simplify the construction of correct, high-performance
applications

e Managing Data Decompositions
¢ Necessary for both parallel and uniprocessor applications
¢ Many levels must be managed

¢ Strong dependence on problem domain (e.g., halos, load-
balanced decompositions, dynamic vs. static)

e Possible approaches
¢ Language-based
e Limited by predefined decompositions

- Some are more powerful than others; Divacon
provided a built-in divided and conquer

¢ Library-based

e Overhead of library (incl. lack of compile-time
optimizations), tradeoffs between number of routines,
performance, and generality

][ ¢ Domain-specific languages ...
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"Domain-specific” languages

I
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(First — think abstract data-structure specific, not science domain)

A possible solution, particularly when mixed with adaptable
runtimes

Exploit composition of software (e.g., work with existing compilers,
don’t try to duplicate/replace them)

Example: mesh handling
¢ Standard rules can define mesh
e Including “new” meshes, such as C-grids
¢ Alternate mappings easily applied (e.g., Morton orderings)

¢ Careful source-to-source methods can preserve human-
readable code

¢ In the longer term, debuggers could learn to handle programs
built with language composition (they already handle 2
languages - assembly and C/Fortran/...)

Provides a single “user abstraction” whose implementation may
use the composition of hierarchical models

¢ Also provides a good way to integrate performance engineering

into the application
23 PARALLEL@|LLINOIS



Enhancing Existing
Languages

e Embedded DSLs are one way to extend
languages

e Annotations, coupled with code
transformations is another

¢ Follows the Beowulf philosophy — exploit
commodity components to provide new capabilities

¢ Approach taken by the Center for Exascale
Simulation of Plasma-Coupled Combustion
xpacc.illinois.edu

e ICE (Illinois Computing Environment) under development
as a way to provide a framework for integrating other
performance tools

1867
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Let The Compiler Do It

e This is the right answer ...
¢ If only the compiler could do it

e | ets look at one of the simplest
operations for a single core, dense
matrix transpose

¢ Transpose involves only data motion;
no floating point order to respect

¢ Only a double loop (fewer options to
consider)
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Transpose Example Review

1867

e do j=1,n
do i=1,n
b(i,5) = a(j,i)
enddo
enddo

e No temporal locality
(data used once)

e Spatial locality only if
(words/cacheline) *
n fits in cache

26
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e Performance

plummets when
matrices no longer fit
in cache
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Blocking for cache helps

e do jj=1,n,stridej
do ii=1,n,stridei
do j=jj,min(n,jj+stridej-1)
do i=ii,min(n,ii+stridei-1)
b(i,j) = a(j,i)
e Good choices of stridei and stridej
can improve performance by a
factor of 5 or more

e But what are the choices of stridei
and stridej?

—
x —
()
~
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Results: Macbook O3
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Results: Blue Waters O1
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Results: Blue Waters O3

Simple, unblocked code
compiled with O3 - 709MB/s
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Compilers Can't Do It All

e Even for very simple operations, the number
of choices that a compiler faces for generating
good code can overwhelm the optimizer

e Guidance by a human expert is required

¢ The programming system must not get in the way of
the expert

¢ The programming system should make it easy to
automate tasks under direction of an expert

e Also note that single code performance
portability still not possible

¢ Just because it is desirable doesn’t make it
][ a reasonable goal
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The Challenges

e Times are changing; MPI is old (for
a programming system)

e Can MPI remain relevant?
¢ For its core constituency?

¢ For new (to MPI) and emerging
applications?
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Weaknesses of MPI

e MPI

¢ Distributed Memory. No built-in support for
user-distributions
e Darray and Subarray don’t count

¢ No built-in support for dynamic execution
e But note dynamic execution easily implemented
in MPI
¢ Performance cost of interfaces; overhead of
calls; rigidity of choice of functionality

¢ I/O is capable but hard to use

e Way better than POSIX, but rarely implemented
][ well, in part because HPC systems make the

mistake of insisting on POSIX
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Strengths of MPI

e MPI
¢ Ubiquity
¢ Distributed memory provides scalability,
reliability, bounds complexity (that MPI
implementation must manage)
e Does not stand in the way of user distributions,
dynamic execution
¢ Leverages other technologies
e HW, compilers, incl OpenMP/OpenACC

¢ Process-oriented memory model encourages
and provides mechanisms for performance

- PARALLEL@ILLINOIS



To Improve on MPI

e Add what is missing:

¢ Distributed data structures (that the user needs)
e This is what most parallel programming “"DSL"s really provide

¢ Low overhead (node)remote operations
e MPI-3 RMA a start, but could be lower overhead if compiled in, handled
in hardware, consistent with other data transports
¢ Dynamic load balancing

e MPI-3 shared memory; MPI+X; AMPI all workable solutions but could
be improved

e Biggest change still needs to be made by applications — must abandon
the part of the execution model that guarantees predictable
performance

¢ Resource coordination with other programming systems

e See strength - leverage is also a weakness if the parts don’t work well
together

¢ Lower latency implementation

e Essential to productivity — reduces the “grain size” or degree of
aggregation that the programmer must provide

e We need to bring back n,,
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The Future King

e MPI remains effective as an
internode programming system

¢ Productivity gains come from writing
libraries and frameworks on top of
MPI

e This was the original intention of the MPI
Forum

e The real challenge will be in
intranode programming...
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Likely Exascale Architectures

( )
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Note: not fully cache
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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

e From “Abstract Machine Models and Proxy
j Architectures for Exascale Computing Rev 1.1," ]
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Another Pre-Exascale
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Most Predict Heterogeneous
Systems for both Ops and Memory

Table 1. Estimated Performance for Leadership-class Systems

Nodes
Feature Derived Stream | PIMparal- rate GFLOPS GFLOPS GFLOPS Processor Node per Total
size  parallelism parallelism lelism GHz FMAs (Scalar) (Stream) (PIM) pernode (TFLOP) system (PFLOPS)
2012 22 16 512 0 2 128 1,024 0 2 1 10,000 23
2020 12 54 1,721 0 2.8 1,210 | 4,819 0 2 6 20,000 241
2023 8 122 3,873 512 3.1 3,026 | 12,006 1,587 4 17 20,000 1,330
2030 4 486 15,489 1,024 4 31,104 | 61,956 | 8,192 16 101 20,000 | 32,401

Feature size is the size of a logic gate in a semiconductor, in nanometers. Derived parallelism is the amount of concurrency, given processor cores with a
constant number of components, on a semiconductor chip of fixed size. Stream and PIM parallelism are the number of specialized processor cores for
stream and processor-in-memory processing, respectively. FMA is the number of floating-point multiply-add units available to each processor core. From
these values, the performance in GigaFLOPS is computed for each processor and node, as well as the total peak performance of a leadership-scale system.

Another estimate, from “CFD Vision 2030 Study:
A Path to Revolutionary Computational Aerosciences,” Slotnick et

al, 2013
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What This (might) Mean for
MPI

e | ots of innovation in the processor
and the node

e More complex memory hierarchy;
no chip-wide cache coherence

e Tightly integrated NIC
e Execution model becoming more

complex

¢ Achieving performance, reliability
targets requires exploiting new
features

—
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~
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What This (might) Mean for
Applications

e Weak scaling limits the range of problems
¢ Latency may be critical (also, some applications
nearing limits of spatial parallelism)
e Rich execution model makes performance
portability unrealistic
¢ Applications will need to be flexible with both their
use of abstractions and their implementation of
those abstractions
e Programmers will need help with performance
issues, whatever parallel programming system
IS used
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MPI is not a BSP system

e BSP = Bulk Synchronous Programming

¢ Programmers like the BSP model, adopting it even
when not necessary (see FIB)

¢ Unlike most programming models, designed with a
performance model to encourage guantitative design
in programs

e MPI makes it easy to emulate a BSP system
¢ Rich set of collectives, barriers, blocking operations

e MPI (even MPI-1) sufficient for dynamic
adaptive programming
¢ The main issues are performance and “progress”

¢ Improving implementations and better HW support
][ for integrated CPU/NIC coordination the answer
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MPI+X

e Many reasons to consider MPI+X

¢ Major: We always have:
e MPI+C, MPI+Fortran

¢ Both C11 and Fortran include support of
parallelism (shared and distributed memory)

e Abstract execution models becoming
more complex

¢ Experience has shown that the programmer
must be given some access to performance
features

][ ¢ Options are (a) add support to MPI and (b) let

X support some aspects
-, PARALLEL@ILLINOIS




X = MPI (or X = &)

1867

e MPI 3.0 features esp. important for

Exascale
¢ Generalize collectives to encourage post
BSP programming:
e Nonblocking collectives
e Neighbor - including nonblocking - collectives

¢ Enhanced one-sided (recall AMM targets)

e Precisely specified (see "Remote Memory Access
Programming in MPI=3,” Hoefler et at, in ACM
TOPC)

e Many more operations including RMW
¢ Enhanced thread safety
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X = Programming with Threads

e Many choices, different user
targets and performance goals
¢ Libraries: Pthreads, TBB

¢ Languages: OpenMP 4, C11/C++11

e C11 provides an adequate (and
thus complex) memory model to
write portable thread code

¢ Also needed for MPI-3 shared
memory
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What are the Issues?

1867

e [sn’t the beauty of MPI + X that
MPI and X can be learned (by
users) and implemented (by
developers) independently?
¢ Yes (sort of) for users
¢ No for developers

e MPI and X must either partition or
share resources

¢ User must not blindly oversubscribe

¢ Developers must negotiate .. 1clalllNoOlS



More Effort needed on the “"+”

e MPI+X won't be enough for Exascale if
the work for "+" is not done very well

¢ Some of this may be language
specification:

e User-provided guidance on resource
allocation, e.g., MPI_Info hints; thread-based
endpoints

¢ Some is developer-level standardization

e A simple example is the MPI ABI specification
— users should ignore but benefit from
T developers supporting

.8 PARALLEL@ILLINOIS



Some Resources to Negotiate

e CPU resources e NIC resources
¢ Threads and contexts ¢ Collective groups
¢ Cores (incl placement) ¢ Routes
¢ Cache ¢ Power

e Memory resources e OS resources
¢ Prefetch, outstanding ¢ Synchronization

load/stores hardware
¢ Pinned pages or ¢ Scheduling
equivalent NIC needs ¢ Virtual memory
¢ Transactional memory
regions

¢ Memory use (buffers)

][ MPI has already led the way in defining interlanguage compatibility,
application binary interfaces, and resource manager/program

T interfaces 4 PARALLEL@ILLINOIS



Summary

e MPI remains the dominant system for
massively parallel HPC because of its greatest
common denominator approach and precisely
defined programming models

e And because it doesn’t pretend to solve the
really hard problem - general locality
management and general intranode
programming

e MPI is currently the internode programming
system planned for the next two generations
of US supercomputers

¢ And some argue for making it key to the intranode
][ programming, leaving single core to the language/
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Thanks!

51

PARALLEL@ILLINOIS



