
Distributed Memory Implementation

Strategies for the kinetic Monte Carlo

Algorithm

António Esteves
Centro ALGORITMI

Alfredo Moura
Institute of Polymers and Composites

University of Minho | Braga, Portugal

School of Engineering

EuroMPI 2016 | Edinburgh | September 27th 2016

Summary

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 1

 Objectives

 Al3Sc precipitation

 kinetic Monte Carlo method - kMC

 synchronous parallel kinetic Monte Carlo method - spkMC

 Parallelization of spkMC with MPI

 Results

 Conclusions

Objectives

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 2

 Parallelize kMC with spkMC algorithm to

speedup its execution

 Use distributed memory architecture and MPI

 Explore different computation vs.

communication strategies

 Evaluate spkMC results by comparing them

with kMC:

 number of precipitates

 dimension of precipitates

 precipitates normalized by lattice sites, etc.

 Compare and assess spkMC implementations

performance and scalability

Al3Sc precipitation

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 3

 Precipitation of Al3Sc in Aluminum is the formation

of clusters of atoms with an Al3Sc structure

 Precipitates alter significantly the Al properties

 Precipitates have a Face-Centered Cubic crystalline

structure

 Sc atoms on the vertices and Al atoms on the faces

 Atoms move in the lattice structure by means of:

 vacancy diffusion: jump to a neighbor vacant site

 interstitial diffusion

TEM image of Al3Sc precipitates

kinetic Monte Carlo method

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 4

 Used to model the temporal evolution of a system by stochastically

exploring sequences of transitions

 Calculates the transitions rates for all trial configurations Γi,j

 Selects a new configuration j with a probability proportional to Γi,j

kinetic Monte Carlo method

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 5

 Γi,V is called vacancy exchange frequency

 vi ≡ attempt frequency for an Al/Sc atom

 ΔEi,V≡ activation energy required to move an Al/Sc atom into a vacancy

Tk

E

iVi
B

Vi

ev

,

*,

kinetic Monte Carlo method

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 6

Moving an Al atom through vacancy diffusion

kinetic Monte Carlo method

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 7

 Selecting a move

 A vacancy is surrounded by 12 first nearest neighbors

 Calculate 12 jump frequencies Γ1 … Γ12

 Generate a random number between 0 and 1

 Select the n-th jump frequency that verifies the relation:

1

11

number random
n

i

i

n

i

i

synchronous parallel kinetic Monte Carlo method

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 8

 Perform a spatial decomposition into subdomains

 Obtain the accumulated frequency for each subdomain

 Define the maximum frequency

 Assign a null event frequency to the subdomains

 Define the spkMC time step increment

kn

i

ikk

 k

Kk

max
,...,1

max

kk max0

max

ln

 pt

spkMC implementation - spatial domain decomposition

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 9

1 Lattice | P=8 Subdomains | 8x8 Sectors
A subdomain and

its 26 boundary regions
1 Lattice

spkMC implementation – major decisions

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 10

 At simulation start, a vacancy is placed on every sector

 Vacancies are allowed to migrate out of their original sector

 Sprint is a sequence of MCS, performed on a sector, without communication

 At end of sprint, each process communicates boundary moves to its neighbors

 Boundary region is as large as possible and we keep track of the changes

that occurred on it during the sprints

 Avoid conflicts with a checker board scheme

spkMC implementation – inter-process communication

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 11

MPI point-to-point communication:

 Both processes participate actively

 Complications:

• when a process has multiples messages to be received

• when the strong synchronization associated with blocking

communication is unsuitable

• possibility of deadlock

 Alternatives:

• MPI nonblocking point-to-point pattern

• MPI-2/3 one-sided communication (or RMA)

spkMC implementation - one-sided communication

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 12

 Allows remote memory access (RMA) to a region called window

 Access epoch: RMA synchronization call on the window 1+ RMA

communication calls RMA synchronization call

 Advantage: asynchronous, or at least, less synchronous

 Transfer routines: MPI_Put, MPI_Get, MPI_Accumulate

 Synchronization mechanisms:

 fence, post-start-complete-wait, lock-unlock

spkMC implementation - one-sided communication

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 13

 Fence synchronization:

 It is collective over the entire communicator associated with the window

 It may result in communication overhead.

 Post-start-complete-wait (PSCW) synchronization:

 Restricts synchronization to the minimum

 Programmer selects the groups of processes that synchronize.

 Lock-unlock synchronization:

 The origin process calls MPI_Win_lock to access the target window

calls transfer routines calls MPI_Win_unlock

 Emulates a shared memory model.

spkMC implementation - prototypes

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 14

 PSCW and lock-unlock prototypes:

 Use RMA

 A trimmed list of boundary and ghost moves is communicated to the

adequate neighbor processes at the end of the sprints

 Lock-unlock proved to be 3x faster than PSCW

 Performance was not satisfactory code profiling proved that a

significant percentage of the execution time was spent in MPI barriers

spkMC implementation - prototypes

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 15

 Send-receive prototype:

 Uses point-to-point communication

 The communication pattern is simpler, regular and similar to the one used

by SPPARKS/LAMMPS simulators

 The communication runs in 3 steps: send and receive moves to/from

nearest neighbor in +X (or -X) direction, in +Y (or -Y) direction, and in +Z

(or -Z) direction

 Due to checker board scheme we do not have to send and receive from

both ‘+’ and ‘-’ directions in each step

 Send (or receive) the variable number of moves and the moves

 Initiate a non-blocking receive (MPI_Irecv) do a blocking send

(MPI_Send) wait for receiving to complete (MPI_Wait).

spkMC implementation - prototypes

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 16

 optimized send-receive prototype:

 The tasks done during each MCS were optimized, mainly to simplify the

analysis of the vacancy moves

 The data structures were simplified.

spkMC implementation – opt-send-receive algorithm

Read simulation, lattice, energy, and parallelization parameters

if (this is master process) then

Send and extended subdomain to all processes

Receive the extended subdomain from master process

Compute the 1st and 2nd nearest neighbors for all subdomain

for (each sprint of the simulation) do

for (each sector in subdomain) do

for (each MCS of a sprint) do

for (each vacancy in current sector) do

Calculate the activation energy associated with the 12 1st nearest neighbors of the vacancy

Calculate vacancy exchange frequency and real time for this MCS

Select randomly a 1st neighbor for new position of the vacancy

Swap the vacancy with the selected neighbor

Store the vacancy move in the array moves

endFor

endFor

Eliminate false moves, convert coordinates, and generate movesX|Y|Z

Send and receive movesX to/from the neighbor process in X direction

Send and receive movesY to/from the neighbor process in Y direction

Send and receive movesZ to/from the neighbor process in Z direction

endFor

if (this sprint is a snapshot point) then

Master process gathers subdomains from all processes and writes configuration to file

endFor

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 17

kMC core

Simulations setup

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 18

 The simulations were run on the University of Minho SeARCH cluster

 Cluster nodes run Linux x86_64

 The code was compiled with gcc 4.9.0 and Open MPI 1.8.4

 Hardware configuration of each node:

 2 processors/sockets

 Processors: Intel Xeon E5-2650 v2, with ivy bridge microarchitecture, 2.6

GHz, 8 physical cores, and 16 cores with hyper-threading

 64GB of RAM

 20MB of L3 cache

 256KB of L2 cache per core

 32KB of L1D and 32KB of L1I cache per core.

 Inter-node communication: Ethernet and Myrinet

Comparing kMC and spkMC output based on 4 metrics

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 19

 Mean radius (Å)

 Mean size (atoms)

 Number of precipitates

 Precipitates/Lattice sites

Metrics: T=673 K , 1% Sc

Comparing kMC and spkMC output based on 4 metrics

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 20

 Mean radius (Å)

 Mean size (atoms)

 Number of precipitates

 Precipitates/Lattice sites

Metrics: T=673 K , 1% Sc

Comparing kMC and spkMC output based on 4 metrics

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 21

 Mean radius (Å)

 Mean size (atoms)

 Number of precipitates

 Precipitates/Lattice sites

Metrics: T=673 K , 1% Sc

Comparing kMC and spkMC output based on 4 metrics

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 22

 Mean radius (Å)

 Mean size (atoms)

 Number of precipitates

 Precipitates/Lattice sites

Metrics: T=673 K , 1% Sc

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 23

0 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 24

0.54 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 25

1.00 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions

1.44 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 27

1.86 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions

2.27 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions

2.68 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 30

3.09 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 31

3.49 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 32

3.89 ms

output from spkMC simulation output from DBSCAN clustering

spkMC simulation evolution :: T=873 K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 33

output from spkMC simulation

4.29 ms

output from DBSCAN clustering

Comparing kMC and spkMC final configuration :: T=873K

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 34

1.0% Sc - kMC 1.0% Sc - spkMC

Performance of the different spkMC prototypes

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 35

Comparing the best performance of different prototypes

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 36

 Speedup of the best spkMC prototype in relation to sequential kMC is 4

Parallel efficiency of the opt-send-receive prototype

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 37

 spkMC presents a low parallel efficiency

Conclusions

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 38

 spkMC reproduces accurately the statistical behavior of the sequential kMC

 The precipitation problem is not embarrassingly parallel spkMC only

presents a 4x speedup when compared to kMC

 Open MPI 1.8.4 does not support RMA natively RMA did not disclosed its

potential in the lock-unlock prototype

Future Work

Summary | Objectives | kMC theoretical foundations | spkMC implementation | Results | Conclusions 39

 Improve the parallel simulation performance and scalability

 Prevent the migration of vacancies between sectors

• eliminates the iterations complexity associated with multiple vacancies

• improves the load balancing between processes

 Overlap communication with computation

 Use a hybrid MPI-OpenMP implementation to improve intra-node

computation performance and still allow more parallelism than a single node

 Take advantage of the improved RMA support allowed by Open MPI 2.0.0

