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Summary

= Objectives

= Al;Sc precipitation

= kinetic Monte Carlo method - kiVIC

= synchronous parallel kinetic Monte Carlo method - spkMC
= Parallelization of spkMC with MPI

= Results

= Conclusions
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Objectives

= Parallelize kMC with spkMC algorithm to
speedup its execution

= Use distributed memory architecture and MPI

= Explore different computation vs.
communication strategies

= Evaluate spkMC results by comparing them
with KMC:

» number of precipitates
» dimension of precipitates
» precipitates normalized by lattice sites, etc.

= Compare and assess spkMC implementations
performance and scalability
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Al,Sc precipitation

= Precipitation of Al;Sc in Aluminum is the formation

of clusters of atoms with an Al;Sc structure

= Precipitates alter significantly the Al properties

= Precipitates have a Face-Centered Cubic crystalline

structure

= Sc atoms on the vertices and Al atoms on the faces

= Atoms move in the lattice structure by means of:
» vacancy diffusion: jump to a neighbor vacant site

> interstitial diffusion

3SC precipitates
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kinetic Monte Carlo method

= Used to model the temporal evolution of a system by stochastically

exploring sequences of transitions

= Calculates the transitions rates for all trial configurations - I5;

= Selects a new configuration j with a probability proportional to I7;
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kinetic Monte Carlo method

= I3, Is called vacancy exchange frequency

AE;y,
kgT

Fi,v =V.*¢

= v, = attempt frequency for an Al/Sc atom

= AE;, = activation energy required to move an Al/Sc atom into a vacancy
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kinetic Monte Carlo method

= Moving an Al atom through vacancy diffusion

Energy

Distance

H» @ e e
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kinetic Monte Carlo method

= Selecting a move
» A vacancy is surrounded by 12 first nearest neighbors
» Calculate 12 jump frequencies > I'; ... I'},
» Generate a random number between 0 and 1

» Select the n-th jump frequency that verifies the relation:

n n+1
> T; <random number < » T;
i=1 i=1
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synchronous parallel kinetic Monte Carlo method

= Perform a spatial decomposition into subdomains

= Obtain the accumulated frequency for each subdomain - Fk = Z Fik

= Define the maximum frequency - I 2 MaX {Fk }
k=1,...,K
= Assign a null event frequency to the subdomains - Yok =L max 1k
P In&
= Define the spkMC time step increment = P r
max
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spkMC implementation — major decisions

= At simulation start, a vacancy is placed on every sector

= Vacancies are allowed to migrate out of their original sector

= Sprint is a sequence of MCS, performed on a sector, without communication

= At end of sprint, each process communicates boundary moves to its neighbors

= Boundary region is as large as possible and we keep track of the changes

that occurred on it during the sprints

= Avoid conflicts with a checker board scheme
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spkMC implementation — inter-process communication

= MPI point-to-point communication:
» Both processes participate actively

» Complications:

» when a process has multiples messages to be received

« when the strong synchronization associated with  blocking

communication is unsuitable

« possibility of deadlock

» Alternatives:

* MPI nonblocking point-to-point pattern
* MPI-2/3 one-sided communication (or RMA)
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spkMC implementation - one-sided communication

= Allows remote memory access (RMA) to a region called window

= Access epoch: RMA synchronization call on the window - 1+ RMA

communication calls - RMA synchronization call

= Advantage: asynchronous, or at least, less synchronous

= Transfer routines: MPTI Put,MPI Get,MPI Accumulate

= Synchronization mechanisms:

» fence, post-start-complete-wait, lock-unlock
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spkMC implementation - one-sided communication

= Fence synchronization:

> It is collective over the entire communicator associated with the window

» It may result in communication overhead.
= Post-start-complete-wait (PSCW) synchronization:

» Restricts synchronization to the minimum

» Programmer selects the groups of processes that synchronize.
= Lock-unlock synchronization:

» The origin process calls MPT Win lock to access the target window -
calls transfer routines - calls MPI Win unlock

» Emulates a shared memory model.
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spkMC implementation - prototypes

= PSCW and lock-unlock prototypes:
» Use RMA

» A trimmed list of boundary and ghost moves is communicated to the

adequate neighbor processes at the end of the sprints
» Lock-unlock proved to be 3x faster than PSCW

» Performance was not satisfactory —> code profiling proved that a

significant percentage of the execution time was spent in MPI barriers
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spkMC implementation - prototypes

= Send-receive prototype:

» Uses point-to-point communication

» The communication pattern is simpler, regular and similar to the one used
by SPPARKS/LAMMPS simulators

» The communication runs in 3 steps: send and receive moves to/from
nearest neighbor in +X (or -X) direction, in +Y (or -Y) direction, and in +Z
(or -Z) direction

» Due to checker board scheme we do not have to send and receive from
both “+’and ‘-’ directions in each step

» Send (or receive) the variable number of moves and the moves

» Initiate a non-blocking receive (MPI Irecv) - do a blocking send

(MPI_Send) - wait for receiving to complete (MP1_Wait).
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spkMC implementation - prototypes

= optimized send-receive prototype:
» The tasks done during each MCS were optimized, mainly to simplify the
analysis of the vacancy moves

» The data structures were simplified.
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spkMC implementation — opt-send-receive algorithm

Read simulation, lattice, energy, and parallelization parameters
if (this is master process) then

Send and extended subdomain to all processes
Receive the extended subdomain from master process
Compute the 1%t and 2" nearest neighbors for all subdomain
for (each sprint of the simulation) do

for (each sector in subdomain) do

for (each MCS of a sprint) do

{ Calculate the activation energy associated with the 12 1%t nearest neighbors of the vacancy
Calculate vacancy exchange frequency and real time for this MCS

Select randomly a 1%t neighbor for new position of the vacancy

v.Swap the vacancy with the selected neighbor

Store the vacancy move in the array moves
endFor
endFor

Eliminate false moves, convert coordinates, and generate movesX|Y|Z
Send and receive movesX to/from the neighbor process in X direction
Send and receive movesY to/from the neighbor process in Y direction

Send and receive movesZ to/from the neighbor process in Z direction
endFor

if (this sprint is a snapshot point) then
Master process gathers subdomains from all processes and writes configuration to file

\-—————_I

endFor
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Simulations setup

= The simulations were run on the University of Minho SeARCH cluster
= Cluster nodes run Linux x86 64
= The code was compiled with gcc 4.9.0 and Open MPI1 1.8.4
= Hardware configuration of each node:
» 2 processors/sockets
» Processors: Intel Xeon E5-2650 v2, with vy bridge microarchitecture, 2.6
GHz, 8 physical cores, and 16 cores with hyper-threading
» 64GB of RAM
» 20MB of L3 cache
» 256KB of L2 cache per core
» 32KB of L1D and 32KB of L1l cache per core.

= [nter-node communication: Ethernet and Myrinet
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Comparing kMC and spkMC output based on 4 metrics

Metrics:

= Mean radius (A)

+ -

= Mean size (atoms)
+ -

= Number of precipitates

+ =

= Precipitates/Lattice sites

+ -

T=673 K, 1% Sc

6,8
6,6
6,4
6,2
6,0
58
5,6
5,4
52

precipitates mean radius

0,23 o048 0,72 095 1,17 138 158 1,78 198 2,17
simulated time (s)

w ghow KMC  smfdos spkMC
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Comparing kMC and spkMC output based on 4 metrics

Metrics:

= Mean radius (A)

+ -

= Mean size (atoms)
+ -

= Number of precipitates

+ =

= Precipitates/Lattice sites

+ -

T=673 K, 1% Sc

atoms precipitates mean size

40

35

30

25

20

0,23 048 0,72 095 1,17 1,38 1,558 1,78 1,98 2,17
simulated time (s)

= o= KMC === spkMC
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Comparing kMC and spkMC output based on 4 metrics

Metrics:

= Mean radius (A)

+ -

= Mean size (atoms)

+ -

= Number of precipitates

+ =

= Precipitates/Lattice sites

+ -

T=673 K, 1% Sc

210

200

190

180

170

160

150

number of precipitates

023 048 0,72 09 1,17 1,38 158 1,78 1,98 2,17

simulated time (s)

== KMC =T spkMC
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Comparing kMC and spkMC output based on 4 metrics

T=673 K, 1% Sc

Metrics:
= Mean radius (A)
g = 3,00E-04
= Mean size (atoms) 2 S50E-04

+ -

= Number of precipitates
+ = 1,50E-04

2,00E-04

= Precipitates/Lattice sites

+ -

1,00E-04
5,00E-05

0,00E+00

number of precipitates normalized by number of atoms

'...-d't

g00 023 048 0,72 09 1,17 1,38 1,58 1,78 198 2,1}
simulated time (s)

= b= KMC e spkMC
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spkMC simulation evolution :: T=873 K

output from spkMC simulation
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spkMC simulation evolution :: T=873 K
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spkMC simulation evolution :: T=873 K Dy

output from spkMC simulation
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spkMC simulation evolution :: T=873 K

output from spkMC simulation
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spkMC simulation evolution :: T=873 K

output from spkMC simulation
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spkMC simulation evolution :: T=873 K

output from spkMC simulation
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spkMC simulation evolution :: T=873 K

output from spkMC simulation
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spkMC simulation evolution :: T=873 K

output from spkMC simulation
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spkMC simulation evolution :: T=873 K

output from spkMC simulation
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spkMC simulation evolution :: T=873 K

output from spkMC simulation
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spkMC simulation evolution :: T=873 K

output from spkMC simulation
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Comparing KMC and spkMC final configuration :: T=873xk <

1.0% Sc - KMC Sc - spkMC
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Performance of the different spkMC prototypes
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Comparing the best performance of different prototypes

Execution time (s)
120

B 56x56x56 W 104x104x104
100

80

60

40

20

sequential lock-unlock send-recv opt-send-recv

Best result for version

= Speedup of the best spkMC prototype in relation to sequential KMC is 4
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Parallel efficiency of the opt-send-receive prototype

30

25

20

15

10

Parallel efficiency (%)

25,0
.....
------- 20,8
...... ...
. ......... 11,6
13,4 .."-o.....
........... 6,3
o...
8 16 27 32 64

Number of processors

opt-send-recv version, domain size = 104x104x104 cells

= spkMC presents a low parallel efficiency
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Conclusions

= sSpkMC reproduces accurately the statistical behavior of the sequential KMC

= The precipitation problem is not embarrassingly parallel = spkMC only

presents a 4x speedup when compared to kMC

= Open MPI 1.8.4 does not support RMA natively - RMA did not disclosed its

potential in the lock-unlock prototype
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Future Work

= [mprove the parallel simulation performance and scalability
» Prevent the migration of vacancies between sectors
* eliminates the iterations complexity associated with multiple vacancies
 iImproves the load balancing between processes
» Overlap communication with computation

» Use a hybrid MPI-OpenMP implementation to improve intra-node

computation performance and still allow more parallelism than a single node

» Take advantage of the improved RMA support allowed by Open MPI 2.0.0
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