
Towards millions of communicating threads
Hoang-Vu Dang, Marc Snir, William Gropp
University of Illinois at Urbana-Champaign (UIUC)

1

Motivation

• Machine node with many cores inter-
connected with Intelligent NIC

• Programming model: MPI+X
– X: intra-node thread parallelism (e.g.

OpenMP); can use lightweight threads (tasks)
• MPI performance does not scale with

many threads

2

Motivation
MPI+X Performance Issues

• Semantics of message matching,
implemented using 2-queue data structure

• Thread scheduler is not aware of status of
communications

• Low-level communication layer is not
designed for multi-core architecture
because of many mutual-exclusion point

3

Our bottom-up approach

• Re-design the message matching
mechanism for multi-threading

• Design an efficient communication
interface between MPI library and thread
scheduler

• Carefully manage resources to avoid
mutual exclusion of many threads and
optimize for cache locality

4

MPI point-to-point
message-matching

Unexpected	Queue

Posted	Queue

MPI	
application NIC

MPI	Runtime	

5

MPI point-to-point
message-matching

Unexpected	Queue

Posted	Queue

MPI	
application NIC

MPI	Runtime	

MSG	arrives	first:
1. SEARCH(PQ)
2. PUSH(UQ)
3. SEARCH(UQ)
4. POP(UQ)

RECV	issuer	comes	first:
1. SEARCH(UQ)
2. PUSH(PQ)
3. SEARCH(PQ)
4. POP(PQ)

6

MPI point-to-point
message-matching

• Multi-threaded scenario

Unexpected	Queue

Posted	Queue

MPI	
application NIC

MPI	Runtime	

MPI	
application

**Each	thread	is	delayed	by	O(M*N)	**
M:	#	pending	messages
N:	#	number	of	threads

MPI+Thread
application

7

MPI point-to-point
message-matching

1
2
4
8
16
32
64
128
256

1 2 4 8 16

La
te
nc
y	
(u
se
c)

#	Threads

OSU	multi-threaded	latency	benchmarks

MVAPICH2

Ideal

>100x

Experiment	is	
done	on	
Stampede	Cluster:
16	core	– FDR	
Infiniband

Ideal	case:	multi-threaded	performance	should	
remain	the	same	as	single	threaded

8

MPI	Runtime	

MPI point-to-point
message-matching

• No mixing of wildcard and normal match

Concurrent	
HashTable NICMPI	

applicationMPI	
applicationMPI	
application

9

MPI point-to-point
message-matching

• Specialized hash-table with one operation:
ACCESS(K,V):
– found then remove and return value
– otherwise insert into the table

• Symmetric notion of message matching:
– IF ((V’ = H.ACCESS(K,V)) == ⏊)

• No unexpected packet / No posted request
– ELSE

• V’ is the matched entry (packet/request)
• V’ is removed from the hash table

10

MPI point-to-point
message-matching

• Specialized hash-table with one operation:
ACCESS(K,V):
– found then remove and return value
– otherwise insert into the table

• Symmetric notion of message matching:
– IF ((V’ = H.ACCESS(K,V)) == ⏊)

• No unexpected packet / No posted request
– ELSE

• V’ is the matched entry (packet/request)
• V’ is removed from the hash table

11

MPI thread scheduler

• What to do when a thread cannot
complete its blocking request?
– Current approach: randomly yield to other

• Better approach: communication-aware
– de-scheduled when cannot complete
– dedicates one or more core for

communication progress; wake up thread
when finished.

12

Proposed runtime architecture

Thread	
scheduler

Concurrent	
HashTable

Concurrent	Packet	
Pool

Scheduling	table

Communication	
Server

accessaccess

alloc/free

wait/signal signal

alloc/free

NIC

poll/post
post

13

Algorithm for receive matching
(eager send)

THREAD: MPI_RECV
• V : Request
• V’ : Packet
• IF ((V’ =

H.ACCESS(K,V)) == ⏊)
– WAIT()

• ELSE
– Finish and return

SERVER: POLL_CQ
• V : Packet
• V’ : Request
• IF ((V’ =

H.ACCESS(K,V)) == ⏊)
– Continue

• ELSE
– SIGNAL()

14

Algorithm for receive matching
(eager send)

THREAD: MPI_RECV
• V : Request
• V’ : Packet
• IF ((V’ =

H.ACCESS(K,V)) == ⏊)
– WAIT()

• ELSE
– Finish and return

SERVER: POLL_CQ
• V : Packet
• V’ : Request
• IF ((V’ =

H.ACCESS(K,V)) == ⏊)
– Continue

• ELSE
– SIGNAL()

How	to	implement	these	efficiently	?

15

MPI Threading Interface
• Require two critical operations over a

synchronization object
– SIGNAL
– WAIT

• Associate a request/thread with a
synchronization object
– Communication server find the object inside

request and signal the waiting thread.
• Semaphore / condition variable
– Implemented using waiting queue

16

MPI Threading Interface: PThread

1
2
4
8
16
32
64
128
256

1 2 4 8 16

La
te
nc
y	
(u
se
c)

#	Threads

OSU	multi-threaded	latency	(64	bytes)

MVAPICH2
PTHREAD
Ideal

3x

The	lower	the	better

17

MPI Threading Interface: Argobots

1
2
4
8
16
32
64
128
256

1 2 4 8 16

La
te
nc
y	
(u
se
c)

#	Threads

OSU	multi-threaded	latency	(64	bytes)
MVAPICH2
PTHREAD
ABT
Ideal

1.7x

Can	we	do	better	than	this?

The	lower	the	better

18

MPI Threading Interface: FULT

• Key idea: using bit-vector for ready
threads structure
– 0: executing or blocked
– 1: runnable

• SIGNAL: atomic bit-set instruction
• WAIT: context-switch to other runnable

threads (find-first-bit-set instruction)

19

MPI Threading Interface: FULT

1

2

4

8

1 2 4 8 16

La
te
nc
y	
(u
se
c)

#	Threads

OSU	multi-threaded	latency

PTHREAD ABT

Ideal FULT

1.2x

The	lower	the	better

20

Summary: Initial assumption
A. MPI point-to-point:

1. No wildcard
2. No pending requests with the same

signature <communicator, rank, tag>
B. Integrated with user-level threads (ULT)

1. No thread migration
2. No fairness requirement

C. Based on NIC with modern features:
1. Communication Server
2. RDMA, address translation is done in

hardware

ß O(1) message matching

ß No kernel interference

ß Fast signal/wait

ß Separation of concern

ß No mem registration

21

Runtime optimization and
implementation

• Concurrent Hash Table: ACCESS
– Open Hashing with Fat entry for cache locality
– Per bucket spinlock is sufficient

• Packet Pool: ALLOC/FREE
– Locality-aware: consumer will perform memory copy
– NUMA-aware: pool per core, stealing for balancing

• Thread scheduler (FULT): WAIT/SIGNAL/YIELD
– Two-level of bit-vector for large number of threads
– YIELD == Self Signal then Wait

22

Scaling to 1M threads
(over-decomposition)

1

2

4

8

16

32

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38
4

32
76
8

65
53
6

13
10
72

26
21
44

52
42
88

10
48
57
6

La
te
nc
y	
(u
se
c)

#	Threads

OSU	multi-threaded	latency	(64	bytes)

PTHREAD

ABT

FULT 9.3

18.8

The	lower	the	better

23

Communication Kernel
Tested implementation

Notation MPI Scheduler Core assignment

mvapich2 MVAPICH2	(2.1) POSIX	thread 1 core	per rank

mvapich2+async MVAPICH2	(2.1) POSIX	thread 2	cores	per	rank

pthread+hash customized POSIX thread 16 cores	per	rank

abt+hash customized ULT	(Argobots) 16	cores	per	rank

fult+hash customized ULT (Fult) 16	cores	per	rank

• NAS	Data	Traffic:
• Single-threaded	performance	with	three	different	communication	

patterns.
• Unbalanced	Tree	Search:

• Distributed	work-stealing	for	tree	traversal
• Graph500:

• Breadth-First-Search	over	large	distributed	graph

24

NAS Data Traffic
• BH: black hole –

multiple sender, one
receiver

• WH: white hole – one
sender, multiple
receiver

• SH: shuffle – all-to-all
like communication

• 128 MPI rank, one per
compute node.

2x

1.4x

.85x

The	higher	the	better

25

Unbalanced Tree Search
• Distributed memory

Work-Stealing
implementation

• ~ 3M node binomial
tree (T3XXL)

• Compare single-
threaded ref. code
with using threads for
receiving work-
stealing requests

10x

The	higher	the	better

26

Graph 500
• Multi-threaded by

spawning threads to
receive from different
targets

• Weak scaling up to
4096 cores at graph
scale-28.

• Compare ref. code with
using threads for
receiving vertices from
multiple nodes.

7x

The	higher	the	better

27

Conclusion

• We have designed and implemented low-
level MPI communication with a large
number of threads.

• Our techniques include:
– relaxation of wildcard semantics
– tightly-coupled design of MPI and thread

scheduler
– resource management for cache locality

28

Future works

• MPI:
–Waitany, Waitall, Waitsome…

• Thread scheduler:
– Fairness and thread migration

• Low-level interface:
– NIC offloading (Omnipath)

• Applications & Benchmarks

29

Related works
• Amer, Abdelhalim, et al. "MPI + threads:

Runtime contention and remedies.” PPoPP,
2015.

• Lu, Huiwei, et al. "MPI + ULT: Overlapping
Communication and Computation with User-
Level Threads." HPCC, 2015.

• Flajslik, Mario, et al. "Mitigating MPI
Message Matching Misery." ISC, 2016.

30

Acknowledgement

• Alex Brooks, Nikoli Dryden (UIUC)
• Ron Brightwell (SNL)
• Pavan Balaji (ANL)

Thank	you,
Question	please!

31

Contact

• Hoang-Vu Dang: hdang8@illinois.edu

32

