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Motivation

• Machine node with many cores inter-
connected with Intelligent NIC

• Programming model: MPI+X
– X: intra-node thread parallelism (e.g. 

OpenMP); can use lightweight threads (tasks) 
• MPI performance does not scale with 

many threads
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Motivation
MPI+X Performance Issues

• Semantics of message matching, 
implemented using 2-queue data structure

• Thread scheduler is not aware of status of 
communications

• Low-level communication layer is not 
designed for multi-core architecture 
because of many mutual-exclusion point
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Our bottom-up approach

• Re-design the message matching 
mechanism for multi-threading

• Design an efficient communication 
interface between MPI library and thread 
scheduler

• Carefully manage resources to avoid 
mutual exclusion of many threads and 
optimize for cache locality
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MPI point-to-point
message-matching

Unexpected	Queue

Posted	Queue

MPI	
application NIC

MPI	Runtime	
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MPI point-to-point
message-matching

Unexpected	Queue

Posted	Queue

MPI	
application NIC

MPI	Runtime	

MSG	arrives	first:
1. SEARCH(PQ)
2. PUSH(UQ)
3. SEARCH(UQ)
4. POP(UQ)

RECV	issuer	comes	first:
1. SEARCH(UQ)
2. PUSH(PQ)
3. SEARCH(PQ)
4. POP(PQ)
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MPI point-to-point
message-matching

• Multi-threaded scenario

Unexpected	Queue

Posted	Queue

MPI	
application NIC

MPI	Runtime	

MPI	
application

**Each	thread	is	delayed	by	O(M*N)	**
M:	#	pending	messages
N:	#	number	of	threads

MPI+Thread
application
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MPI point-to-point
message-matching
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>100x

Experiment	is	
done	on	
Stampede	Cluster:
16	core	– FDR	
Infiniband

Ideal	case:	multi-threaded	performance	should	
remain	the	same	as	single	threaded
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MPI	Runtime	

MPI point-to-point
message-matching

• No mixing of wildcard and normal match

Concurrent	
HashTable NICMPI	

applicationMPI	
applicationMPI	
application

9



MPI point-to-point
message-matching

• Specialized hash-table with one operation: 
ACCESS(K,V): 
– found then remove and return value
– otherwise insert into the table

• Symmetric notion of message matching:
– IF ((V’ = H.ACCESS(K,V)) == ⏊ )

• No unexpected packet / No posted request
– ELSE

• V’ is the matched entry (packet/request)
• V’ is removed from the hash table
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MPI point-to-point
message-matching

• Specialized hash-table with one operation: 
ACCESS(K,V): 
– found then remove and return value
– otherwise insert into the table

• Symmetric notion of message matching:
– IF ((V’ = H.ACCESS(K,V)) == ⏊ )

• No unexpected packet / No posted request
– ELSE

• V’ is the matched entry (packet/request)
• V’ is removed from the hash table
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MPI thread scheduler

• What to do when a thread cannot 
complete its blocking request? 
– Current approach: randomly yield to other

• Better approach: communication-aware
– de-scheduled when cannot complete
– dedicates one or more core for 

communication progress; wake up thread 
when finished.
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Proposed runtime architecture

Thread	
scheduler

Concurrent	
HashTable

Concurrent	Packet	
Pool

Scheduling	table

Communication	
Server

accessaccess

alloc/free

wait/signal signal

alloc/free

NIC

poll/post
post
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Algorithm for receive matching 
(eager send)

THREAD: MPI_RECV
• V : Request
• V’ : Packet
• IF ((V’ = 

H.ACCESS(K,V)) == ⏊ )
– WAIT()

• ELSE
– Finish and return

SERVER: POLL_CQ
• V : Packet
• V’ : Request
• IF ((V’ = 

H.ACCESS(K,V)) == ⏊ )
– Continue

• ELSE
– SIGNAL()
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Algorithm for receive matching 
(eager send)

THREAD: MPI_RECV
• V : Request
• V’ : Packet
• IF ((V’ = 

H.ACCESS(K,V)) == ⏊ )
– WAIT()

• ELSE
– Finish and return

SERVER: POLL_CQ
• V : Packet
• V’ : Request
• IF ((V’ = 

H.ACCESS(K,V)) == ⏊ )
– Continue

• ELSE
– SIGNAL()

How	to	implement	these	efficiently	?
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MPI Threading Interface
• Require two critical operations over a 

synchronization object
– SIGNAL
– WAIT

• Associate a request/thread with a 
synchronization object
– Communication server find the object inside 

request and signal the waiting thread.
• Semaphore / condition variable
– Implemented using waiting queue
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MPI Threading Interface: PThread
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MPI Threading Interface: Argobots
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Can	we	do	better	than	this?

The	lower	the	better
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MPI Threading Interface: FULT

• Key idea: using bit-vector for ready 
threads structure
– 0: executing or blocked
– 1: runnable

• SIGNAL: atomic bit-set instruction
• WAIT: context-switch to other runnable 

threads (find-first-bit-set instruction)
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MPI Threading Interface: FULT
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Summary: Initial assumption
A. MPI point-to-point:

1. No wildcard
2. No pending requests with the same 

signature <communicator, rank, tag>
B. Integrated with user-level threads (ULT)

1. No thread migration
2. No fairness requirement

C. Based on NIC with modern features:
1. Communication Server
2. RDMA, address translation is done in 

hardware

ß O(1) message matching

ß No kernel interference

ß Fast signal/wait

ß Separation of concern

ß No mem registration
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Runtime optimization and 
implementation

• Concurrent Hash Table: ACCESS
– Open Hashing with Fat entry for cache locality
– Per bucket spinlock is sufficient

• Packet Pool: ALLOC/FREE
– Locality-aware: consumer will perform memory copy
– NUMA-aware: pool per core, stealing for balancing

• Thread scheduler (FULT): WAIT/SIGNAL/YIELD
– Two-level of bit-vector for large number of threads
– YIELD == Self Signal then Wait
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Scaling to 1M threads
(over-decomposition)
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Communication Kernel 
Tested implementation

Notation MPI Scheduler Core assignment

mvapich2 MVAPICH2	(2.1) POSIX	thread 1 core	per rank

mvapich2+async MVAPICH2	(2.1) POSIX	thread 2	cores	per	rank

pthread+hash customized POSIX thread 16 cores	per	rank

abt+hash customized ULT	(Argobots) 16	cores	per	rank

fult+hash customized ULT (Fult) 16	cores	per	rank

• NAS	Data	Traffic:
• Single-threaded	performance	with	three	different	communication	

patterns.
• Unbalanced	Tree	Search:

• Distributed	work-stealing	for	tree	traversal
• Graph500:

• Breadth-First-Search	over	large	distributed	graph
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NAS Data Traffic
• BH: black hole –

multiple sender, one 
receiver

• WH: white hole – one 
sender, multiple 
receiver

• SH: shuffle – all-to-all 
like communication

• 128 MPI rank, one per 
compute node.

2x

1.4x

.85x

The	higher	the	better
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Unbalanced Tree Search
• Distributed memory 

Work-Stealing 
implementation

• ~ 3M node binomial 
tree (T3XXL)

• Compare single-
threaded ref. code 
with using threads for 
receiving work-
stealing requests

10x

The	higher	the	better
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Graph 500
• Multi-threaded by 

spawning threads to 
receive from different 
targets

• Weak scaling up to 
4096 cores at graph 
scale-28.

• Compare ref. code with 
using threads for 
receiving vertices from 
multiple nodes.

7x

The	higher	the	better
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Conclusion

• We have designed and implemented low-
level MPI communication with a large 
number of threads.

• Our techniques include:
– relaxation of wildcard semantics
– tightly-coupled design of MPI and thread 

scheduler
– resource management for cache locality
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Future works

• MPI: 
–Waitany, Waitall, Waitsome…

• Thread scheduler: 
– Fairness and thread migration

• Low-level interface: 
– NIC offloading (Omnipath)

• Applications & Benchmarks
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Thank	you,
Question	please!
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