




# The Elephant in the Room: The Under-Representation of Women in the MPI Community

Toni Collis, EPCC (acollis@epcc.ed.ac.uk)
Athina Frantzana, EPCC (a.frantzana@sms.ed.ac.uk)









### Overview

Why?

What have we found?

What can we do about it?



# Why is diversity important?

- Everyone should be given an opportunity irrespective of who they are
- Diverse teams = better team IQ
  - Mixed gender teams are beneficial for output, productivity, improved publication rate and impact of research
- Recruitment
  - US Dept of Labor: 19% increase in computer scientists in workforce is needed between 2010 and 2020
  - Canada needs additional 182,000 IT positions
  - Europe: expects 900,000 IT sector job shortfall by 2020
  - Women are 51% of the population: to exclude them massively limits your potential talent recruitment pool



## What is the problem?

#### Are there women in HPC? Where are they?

- School age education
- Undergraduate degrees (HESA 2014/15):
  - Despite increased enrollment of women in degrees there was a 40% drop in the number of degrees in computer science awarded to women in the US 2001-2006
  - Women are more likely to study subjects allied to Medicine (81%), Veterinary Science (75%) and Agriculture & Related Subjects (63%)
  - Men are more likely to study subjects including Engineering & Technology (86%), Computer Science (83%) and Architecture, Building & Planning (66%)
- Postgraduate education
- Job sector
  - Young women often leave computer science or terminate their training earlier than men
  - UK Tech sector: 17% female
  - European Tech sector: 16% female
  - USA computational and mathematics: 26% female
  - But women are 49% of the UK< 55% of European and 47% of the USA workforce</li>



#### What about HPC?

- EASC 2013 9%
- PGAS 2013 5%
- Supercomputing 2014 11% (possibly as high as 14%)
- EASC 2015 15% women (only 9.5% when EPCC staff excluded)
- PRACEDays15 17% female attendees (averaged across all sessions, 21% of registrants)
- SC15: 11% of technical programme attendees were female

#### • Authorship for SC16:

- 265 accepted submissions include at least one female author, 525 include only male on authors or un- known gender. Aggregate acceptance factor (with female author): 0.181 Aggregate acceptance factor (all male/unknown gender authors): 0.158
- For SC06-SC16 total submissions: 2082 submissions include women, 4579 do not. Aggregate acceptance factor (with female author): 0.311 Aggregate acceptance factor (all male/unknown gender authors): 0.323



# MPI: a specialist HPC community? Paper authorship in EuroMPI

|      | Total papers          | Papers with M | Papers with F | % paper with F |
|------|-----------------------|---------------|---------------|----------------|
| 2010 | 35                    | 35            | 6             | 17%            |
| 2011 | 28                    | 28            | 5             | 18%            |
| 2012 | 26                    | 26            | 3             | 12%            |
| 2013 | 51                    | 51            | 11            | 22%            |
| 2014 | 36                    | 36            | 6             | 19%            |
| 2015 | 14                    | 14            | 1             | 7.1%           |
| 2016 | 17 (only full papers) | 17            | 3             | 18%            |



# MPI: a specialist HPC community? Unique authors

|      | Male Authors | Female<br>Authors | Unknown | % F | Total | P(X <sup>2</sup> ) |
|------|--------------|-------------------|---------|-----|-------|--------------------|
| 2006 | 159          | 11                | 3       | 6%  | 173   | 7.3 E-30           |
| 2007 | 169          | 7                 | 0       | 4%  | 176   | 2.7 E-34           |
| 2008 | 153          | 10                | 2       | 6%  | 165   | 4.0 E-29           |
| 2009 | 134          | 17                | 11      | 10% | 162   | 1.7 E-21           |
| 2010 | 115          | 10                | 0       | 8%  | 125   | 5.9 E-21           |
| 2011 | 160          | 8                 | 0       | 5%  | 168   | 9.3 E-32           |
| 2012 | 129          | 8                 | 0       | 6%  | 137   | 4.8 E-25           |
| 2013 | 173          | 12                | 8       | 6%  | 193   | 2.5 E-32           |
| 2014 | 108          | 8                 | 5       | 7%  | 121   | 1.6 E-20           |
| 2015 | 61           | 3                 | 0       | 5%  | 64    | 4.2 E-13           |
| 2016 | 157          | 15                | 0       | 9%  | 172   | 2.6 E-27           |



#### EuroMPI 2016

Submissions to the conference:

ΑII

Male first authors: 53 88.33% Female first authors: 7 11.67%

Prefer not disclose first authors:

Delegates: 17% female

Full papers37Male first authors:3085.71%Female first authors:514.29%Prefer not disclose first authors:2

100.00%

0

0.00%

Short papers9Male first authors:9Female first authors:0

Prefer not disclose first authors:

ACM published posters 7

Male first authors:685.71%Female first authors:114.29%

Prefer not disclose first authors:

Non-published posters 6

Male first authors: 5 83.33% Female first authors: 1 16.67%

Prefer not disclose first authors:

Tutorials 3

Male first authors:

3 100.00%
Female first authors:
0 0.00%

Prefer not disclose first authors:



## EuroMPI 2016 Submissions

| Accepted full papers               | 18 |         |
|------------------------------------|----|---------|
| Male first authors:                | 15 | 88%     |
| Female first authors:              | 2  | 13%     |
| Prefer not disclose first authors: | 1  |         |
| At least one male                  | 17 | 100.00% |
| At least one female                | 3  | 18%     |

#### Probability of acceptance

| Male first authors   | 50%    |
|----------------------|--------|
| Female first authors | 40%    |
| P(X <sup>2)</sup>    | 0.90   |
| At least one male    | 49%    |
| At least one female  | 50.00% |
| P(X <sup>2)</sup>    | 0.98   |



#### MPI Forum

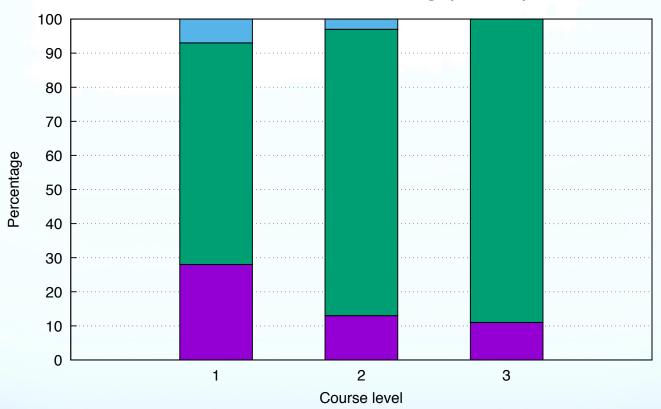
**MPI-1.0 and 1.1:** 2 out of 64 female forum members (3%), 0/12editors

MPI 1.2 and 2.0: 8 out of 112 female forum members (7%), 0/12 editors

MPI 1.3 and 2.1: 0 out of 44 female forum members (0%), 0/18 editors

MPI 2.2: 0 out of 63 forum members (0%), 0/13 editors

MPI 3.0: 2 out of 96 forum members (2%), 0/11 editors


MPI 3.1: 2 out of 84 forum members (2%), 1/14 editors (7%)

Total: 14/531= 2.6%



## HPC Training and its impact on MPI

ARCHER/PATC training (EPCC)



All PATC courses from 03/2012 to 12/2015: 5022 participants, 894 female (15%)



### What does this tell us?

- Clearly there is a problem!
- Still unclear where the problem starts, but definitely an indication of a leaky pipeline
- EuroMPI doesn't seem to be attracting as many women as Supercomputing, but training participation is similar.
- The proportion of paper authors is far smaller than the proportion of female attendees



#### What can we do?

First we need to understand the causes:

Extensive research has been carried out to benchmark and understand the contribution of women to STEM and why it is significantly lower than the proportion of women in the global population. There is no definitive single answer, though commonly cited factors include:

- gendered roles emerging in childhood due to stereotyping;
- stereotyping in the workplace;
- the higher propensity of women to leave STEM jobs than men at every stage of their career path (the 'leaky- pipeline');
- a lack of visible role models for those in under-represented groups; and
- explicit/implicit bias.



#### What can we do?

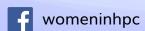
- Acknowledge that we are all influenced by gender biases
- Base selection decisions on objective information
- Remove gender information from evaluation scenarios
- Offer mentoring
- Teach networking skills
- Offer events for women (networking, training etc)
- Careers events aimed at women
- Change the way we train to move away from traditional models
- Appreciate that apparently 'confident' people may not be so confident!
- Start counting!

#### These activities benefit everyone

Source | Solving the Equation: The Variables for Women's Success in Engineering and Computing. Published by the AAUW (American Association of University Women)









Thank you:
John West (TACC)
Lorna Rivera (Georgia Tech)
Rolf Rabenseifner (HLRS)
MPI Forum
EuroMPI 2016 Organisers

Questions?

www.womeninhpc.org







