
Efficient	Large	Message	Broadcast	using	NCCL	
and	CUDA-Aware	MPI	for	Deep	Learning

Ammar	Ahmad	Awan,	Khaled	Hamidouche,	Akshay	Venkatesh,	and	
Dhabaleswar	K.	Panda

Network-Based	Computing	Laboratory
Department	of	Computer	Science	and	Engineering
The	Ohio	State	University,	Columbus,	OH,	U.S.A 1



Outline
• Introduction

– Deep	Learning
– CUDA-Aware	MPI
– NCCL

• Research	Challenges
• Proposed	Design

– Hierarchical	Communication
– Implementation	Details

• Performance	Evaluation
• Conclusion	and	Future	Work

2EuroMPI	2016



• Deep	Learning	is	going	through	a	resurgence
– Excellent	accuracy	for	deep/convolutional	neural	

networks
– Public	availability	of	versatile	datasets	like	MNIST,	

CIFAR,	and	ImageNet
– Widespread	popularity	of	accelerators	like	Nvidia	

GPUs
• DL	frameworks	and	applications

– Caffe,	Microsoft	CNTK,	Google	TensorFlow,	and	
many	more..

– Most	of	the	frameworks	are	exploiting	GPUs	to	
accelerate	training

– Diverse	range	of	applications	– Image	Recognition,	
Cancer	Detection,	Self-Driving	Cars,	Speech	
Processing	etc.

Deep	Learning	Resurgence

3EuroMPI	2016

0

50

100

150

20
03
-1
2

20
04
-1
0

20
05
-0
8

20
06
-0
6

20
07
-0
4

20
08
-0
2

20
08
-1
2

20
09
-1
0

20
10
-0
8

20
11
-0
6

20
12
-0
4

20
13
-0
2

20
13
-1
2

20
14
-1
0

20
15
-0
8

20
16
-0
6

Re
la
tiv

e	
Se
ar
ch
	In

te
re
st

Deep	Learning	- Google	Trends

https://www.top500.org/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/
http://www.computervisionblog.com/2015/11/the-deep-learning-gold-rush-of-2015.html



• The	ImageNet	- Large	Scale	Visual	Recognition	
Challenge	(ILSVRC)

– 90%	of	the	ImageNet	teams	used	GPUs	in	2014*
– DL	models	like	AlexNet,	GoogLeNet,	and	VGG	are	used
– A	natural	fit	for	DL	due	to	the	throughput-oriented	nature

• Nvidia	GPUs	are	the	main	driving	force	for	faster	
training	of	DL	models

– Can	use	Nvidia	Kepler	and/or	Pascal	architecture
– DGX-1	(dedicated	DL	super-computer)	
– Titan	series	(lower	precision	but	a	good	fit	for	DL)

• 63	/	500	Top	HPC	systems	use	Nvidia	GPUs	–
www.top500.org

Deep	Learning,	GPUs,	and	HPC

4EuroMPI	2016

https://www.microway.com/hpc-tech-tips/deep-learning-frameworks-survey-tensorflow-torch-theano-caffe-neon-ibm-machine-learning-stack/
*https://blogs.nvidia.com/blog/2014/09/07/imagenet/



• Before	CUDA	4.0,	lack	of	a	common	memory	
registration	mechanism

– Each	device	has	to	pin	the	host	memory	it	will	use
– Many	operating	systems	do	not	allow	multiple	devices	

to	register	the	same	memory	pages
– Previous	solution:	Use	different	buffer	for	each	device	

and	copy	data
• After	CUDA	4.0,	both	devices	register	a	common	

host	buffer
– GPU	copies	data	to	this	buffer,	and	the	network	

adapter	can	directly	read	from	this	buffer	(or	vice-
versa)

– Note	that	GPU-Direct	does	not	allow	you	to	bypass	
host	memory

• After	CUDA	5.0	(GDR),	network	adapter	can	directly	
read/write	data	from/to	GPU	device	memory

– Avoids	copies	through	the	host
– Fastest	possible	communication	between	GPU	and	IB	

HCA
– Allows	for	better	asynchronous		communication

CUDA-Aware	MPI

5EuroMPI	2016

InfiniBand

GPU

GPU	
Memory

CPU

Chip	
set

System
Memory

https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

Before	CUDA	4.0 After	CUDA	4.0

After	CUDA	5.0



• Collective	Communication	with	a	caveat!
– GPU	buffer	exchange	
– Dense	Multi-GPU systems	

(Cray	CS-Storm,	DGX-1)
– MPI-like	– but	not	MPI	standard	compliant

• NCCL	(pronounced	Nickel)
– Open-source	Comm.	Library	by	Nvidia
– Topology-aware,	ring-based	(linear)	collective	

communication	library	for	GPUs
– Divide	bigger	buffers	to	smaller	chunks
– Good	performance	for	large	messages	

• Kernel-based	threaded	copy	(Warp-level	Parallel)	
instead	of	cudaMemcpy

NCCL	Communication	Library

6EuroMPI	2016

https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/



• What	are	the	new	design	challenges	brought	forward	by	
modern	Deep	Learning	(DL)	frameworks?	

• How	can	we	design	efficient and	scalable communication	of	
very	large GPU	buffers	for	upcoming	multi-GPU	nodes?	

• Can	we	exploit	a	GPU-only single-node	communication	library	
like	NCCL to	scale	out	on	multi-GPU	nodes	of	next-generation	
clusters?	

Research	Challenges:	Overview

7EuroMPI	2016



• What	are	the	new	requirements	brought	forward	for	
MPI_Bcast by	modern	DL	frameworks?
1. Very	Large Buffer	Sizes	– Order	of	Megabytes
2. Broadcast of	model	parameters	before	each	iteration
3. GPU-only buffers	in	most	cases

• Are	there	libraries that	can	improve	collective	
communication	performance for	GPU	buffers?

– Yes,	NCCL	Library

• What	are	the	issues in	using	just	NCCL?
– Single	Process	– Multiple	Threads	=>	Single	node	only

• Can	MPI	runtimes	take	advantage	of	CUDA-
Awareness	and	NCCL	in	tandem?

– Yes,	hierarchical communication	in	MPI	runtimes	can	
be	exploited	to	scale	out

Research	Challenges:	Details

8EuroMPI	2016

http://arxiv.org/abs/1511.00175



• CUDA-Aware	MPI	provides	excellent	
performance	for	small	and	medium	
message	sizes

• NCCL	has	overhead	for	small	
messages	but	provides	excellent	
performance	for	large	messages

• Can	we	have	designs	that	provide	
good	performance	for	internode	
communication	and	internode	
scalability?

Design	Space	for	Broadcast

9

Inter-node	
Scalability

In
tr
a-
no

de
	

Pe
rfo

rm
an
ce

CUDA-
Aware	
MPI

NCCL Proposed
Designs

EuroMPI	2016



Proposed	Design:	Overview

10EuroMPI	2016

1

32

4

Internode	Comm.	(Knomial)

1 2

CPU

PLX

3 4

PLX

Intranode Comm.
(NCCL	Ring)

Ring	Direction	

• We	design	and	implement	MPI_Bcast	
– Augment	different	MPI_Bcast	algorithms	
– Exploit	hierarchical	designs	for	scalable	inter-node	

communication	
– In	tandem,	efficiently	exploit	NCCL	for	intra-node	

communication.
– Using	NCCL	for	the	appropriate	message	range	to	get	

optimized	performance	for	large	messages
– Exploit	tuning	to	provide	overall	best	performance	

for	all	message	sizes
• Study	and	analyze	the	benefits	of	the	proposed	

designs	through	a	comprehensive	performance	
evaluation	using		a	micro-benchmark	and	a	
popular	DL	framework	called	CNTK.



1. Communicator	Creation	(MPI_Init	time)
– NCCL	Communicators	inside	MPI	Communicators

2. Communicator	Caching	(Successive	Calls)
– Do	not	create	the	communicators	if	we	have	them	available	=>	

Creation	is	expensive!
3. First,	exploit	internode	broadcast	to	exchange	b/w	nodes
4. Then,	use	ncclBcast	for	intranode	GPUs	where	it	performs	

better	than	existing	intranode	broadcast
5. Cleanup	communicators	(Some	minor	details)

Proposed	Design:	Details

11EuroMPI	2016



1.	Create	a	NCCL	communicator	on	
the	first	MPI_Bcast	call

ncclCommInitRank 
(&nccl_comm, 
my_local_size, 
nccl_commId, 
my_local_id);

2.	Communicator	creation	is	
expensive!
- Save	it	for	successive	MPI_Bcast	
calls

Communicator	Creation/Caching

12EuroMPI	2016

Hierarchical	Communicators	
(MPI	Level)

Intranode	
Communicator	

(MPI) Internode	
Communicator

(MPI)NCCL	
Communicator



• MPI	applications	can	use	nccl<Collective>()	style	
functions	with	a	CUDA	stream	argument

• ncclBcast()	à

NCCL	Broadcast

13EuroMPI	2016



Hierarchical	Communication

14EuroMPI	2016

3.	Hierarchical	Design
– Inter-node	communication

• Wide	array	of	algorithms	have	been	proposed	and	used	
– Binomial	Tree
– Knomial	Tree
– Scatter-Ring	Allgather
– Scatter-RecursiveDoubling	Allgather

• STG-COLL:	Staged	collectives	– Copies	between	Device	and	Host	buffers
• GDR-COLL:	GPUDirectRDMA	(GDR)	collectives	– Direct	communication	using	

Device	buffers
– Intra-node	communication

• STG-COLL:	Can	use	shared-memory	communication	when	buffers	are	on	the	host
• NCCL:	(ring-based)	communication	for	GPU	buffers



• STG-COLL:	
– Exploit	the	pipelined	staging	

support	via	the	Host	memory
• GDR-COLL:	

– Use	GPUDirect	RDMA	(GDR)	
in	the	correct	fashion	avoiding	
the	P2P	bottleneck

– Use	CUDA	IPC	where	
appropriate

Internode:	STG-COLL	and	GDR-COLL

15EuroMPI	2016

https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

STG-COLL:	Copies	between	Host	and	GPU



• STG-COLL:	
– When	the	buffer	is	copied	to	the	Host,	shared	memory	collectives	

can	be	used	directly
• Proposed	(NCCL):	

– Sort	of	GDR-COLL	– because	we	operate	on	the	GPU	buffers	
directly.	

– No	copies	between	Host	and	GPU
– STG-COLL	is	slow	for	large	because	of	copying	overhead
– NCCL	is	throughput-oriented	so	it	works	much	better

• No	copies	are	involved	so	lesser	overhead

Intranode:	STG-COLL	or	NCCL

16EuroMPI	2016



Internal-Bcast	Implementation

The	Actual	MPI_Bcast	Operation

17EuroMPI	2016

MPI_Bcast	(buffer,	comm)

internode_bcast	(buffer,	intercomm)

intranode_bcast	(buffer,	intracomm)

4.	Making	the	actual	
MPI_Bcast call

– Call	the	implementation’s	
internal	functions

– Perform	the	internode	
phase

– Perform	the	intranode	
phase

5.	Cleanup	at	MPI_Finalize ncclBcast	(buffer,	ncclComm)



• High	Performance	open-source	MPI	Library	for	InfiniBand,	Omni-Path,	Ethernet/iWARP,	and	RoCE
– MVAPICH	(MPI-1),	MVAPICH2	(MPI-2.2	and	MPI-3.0),	Started	in	2001,	First	version	available	in	2002
– MVAPICH2-X	(MPI	+	PGAS),	Available	since	2011
– Support	for	GPGPUs	(MVAPICH2-GDR)	and	MIC	(MVAPICH2-MIC),	Available	since	2014
– Support	for	Virtualization	(MVAPICH2-Virt),	Available	since	2015
– Support	for	Energy-Awareness	(MVAPICH2-EA),	Available	since	2015
– Support	for	InfiniBand	Network	Analysis	and	Monitoring	(OSU	INAM)	since	2015

– Used	by	more	than	2,675	organizations	in	83	countries
– More	than	391,000	(>	0.39	million)	downloads	from	the	OSU	site	directly
– Empowering	many	TOP500	clusters	(Jun	‘16	ranking)

• 12th ranked	519,640-core	cluster	(Stampede)	at		TACC
• 15th ranked	185,344-core	cluster	(Pleiades)	at	NASA
• 31st ranked	76,032-core	cluster	(Tsubame	2.5)	at	Tokyo	Institute	of	Technology	and	many	others

– Available	with	software	stacks	of	many	vendors	and	Linux	Distros	(RedHat	and	SuSE)
– http://mvapich.cse.ohio-state.edu

• Empowering	Top500	systems	for	over	a	decade
– System-X	from	Virginia	Tech	(3rd in	Nov	2003,	2,200	processors,	12.25	TFlops)	->
– Stampede	at	TACC	(12th in	Jun’16,	462,462	cores,	5.168	Plops)

Overview	of	MVAPICH2	Project

EuroMPI	2016 18



• We	have	performed	all	experiments	on	a	Cray	CS-Storm	based	GPU	cluster	
called	KESCH	located	at	the	Swiss	National	Supercomputing	Center

• Multi-GPU	dense	cluster:	12	hybrid	nodes,	each	node	contains	8	NVIDIA	K-80	
GK210GL	GPUs	

• 4	K-80	cards	are	connected	per	socket
• 16	CUDA	devices	(or	GPUs)	in	one	node
• Dual-socket	Intel	Xeon	CPUs
• Connect-IB	FDR	Interconnect

Experimental	Setup

19EuroMPI	2016



• Micro-benchmark:	Used	osu_bcast	from	the	OSU	
Microbenchmarks	(OMB)	suite

• Application:	Microsoft	CNTK
– CUDA-Aware	version	called	CA-CNTK*
– Uses	MPI_Bcast	on	large	GPU	buffers

Performance	Evaluation

20EuroMPI	2016

 * Dip Sankar Banerjee, Khaled Hamidouche and Dhabaleswar Panda; Re-designing CNTK Deep Learning 
Framework on Modern GPU Enabled Clusters; to be presented at 8th IEEE International Conference on 
Cloud Computing Technology and Science (CloudCom), Luxembourg 12-15 December 2016 



Current	State:	
NCCL	vs.	MV2-GDR	(8	and	16	GPUs)

21EuroMPI	2016

• For	small	messages	(up	to	64K),	NCCL	
suffers	up	to	2.2x	degradation for	both	8	
and	16	GPU	cases	while	MV2-GDR	has	
excellent	performance

• For	medium	and	large	messages,	the	trend	
is	reversed!

• NCCL	performs	much	better	and	MV2-GDR	
suffers	up	to	2.2x	degradation for	both	8	
and	16	GPU	cases

2.2x	Degradation	(on	average)



Comparison	of		MV2-GDR,	MV2-
GDR-Opt,	and	NCCL:	16	GPUs

22EuroMPI	2016

• The	proposed	design	(MV2-GDR-Opt)	performs	as	good	as	
MV2-GDR	for	small	messages	(up	to	128K),	

• For	medium	and	large	messages,	MV2-GDR-Opt	provides	up	to	
4x	improvement over	MV2-GDR

4x	
Improvement

3.25x
Improvement



Comparison	of		MV2-GDR,	MV2-
GDR-Opt,	and	NCCL:	64	GPUs

23EuroMPI	2016

• MV2-GDR-Opt)	performs	as	good	as	MV2-GDR	for	small	and	medium	
messages	(up	to	2M)	

• For	large	messages,	MV2-GDR-Opt	provides	up	to	2.2x	improvement
over	MV2-GDR

2x
Improvement 2.2x

Improvement



• Microsoft	CNTK	is	a	popular	
and	efficient	DL	framework

• CA-CNTK	is	a	CUDA-Aware	
version	developed	at	OSU

• Proposed	Broadcast	
provides	up	to	47	percent
improvement	in	Training	
time	for	the	VGG network

Application	Performance:	
Microsoft	CNTK	(64	GPUs)

24EuroMPI	2016

47% 37%
Improvement



• Exponential	growth	in	GPU-based	Deep	Learning	frameworks	that	bring	new	
requirements	for	MPI	runtimes

• We	proposed	and	implemented	an	efficient,	scalable,	and	hierarchical	design	for	
MPI_Bcast	 to	support	DL	frameworks.

• Proposed	Designs	provide	
– Efficient	scale	out	up	to	64	GPUs

– Up	to	47%	improvement	in	training	time	for	Microsoft	CNTK	framework

• Fundamental	work	that	identifies	challenges	and	opportunities	for	MPI	runtimes	that	
deal	with	next-generation	DL	frameworks	and	possibly	HPDA	applications

• Plan	to	make	this	work	publicly	available	through	a	future	MVAPICH2-GDR	release	

Conclusion

25EuroMPI	2016



• Exploit	Optimizations	for	Dense	GPU	nodes	with	
upcoming	NVLink

• Towards	Higher	Performance	(lower	latency)	
and	Scalability	(>	256	GPUs)	

• Evaluation	with	other	DL	frameworks

Future	Work

26EuroMPI	2016



Ammar	Ahmad	Awan,	Khaled	Hamidouche,	Akshay	Venkatesh,	
and	Dhabaleswar	K.	Panda

{awan.10,	hamidouche.2,	venkatesh.19,	panda.2}	@osu.edu

Network-Based	Computing	Laboratory	
http://nowlab.cse.ohio-state.edu/

MVAPICH	Web	Page	
http://mvapich.cse.ohio-state.edu/

Thank	You!

27EuroMPI	2016


