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Deep Learning Resurgence

150

* Deep Learning is going through a resurgence 100

— Excellent accuracy for deep/convolutional neural
networks

\

Relative Search Interest
o

— Public availability of versatile datasets like MNIST, R
N O 0 O g AN N O 0 O T NN AN O 0 O
CIFAR, and ImageNet TP QQPQQ U0 QQ 0 dTo0
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— Widespread popularity of accelerators like Nvidia SLE8E8888gddgdgzs=a4d
« DL frameworks and applications —Deep Learning - Google Trends
- Cha .1 Artificial Intelligence Revenue, World Markets: 2016-2025
— Caffe, Microsoft CNTK, Google TensorFlow, and O =
many more.. 435,000
— Most of the frameworks are exploiting GPUs to $30.000
accelerate training g S0
. . . . S $20,000
— Diverse range of applications — Image Recognition, e
. PR $15,000
Cancer Detection, Self-Driving Cars, Speech +10.000
Processing etc. $5.000 I
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http://www.computervisionblog.com/2015/11/the-deep-learning-gold-rush-of-2015.html

T - H - E
OHIO https://www.top500.0rg/news/market-for-artificial-intelligence-projected-to-hit-36-billion-by-2025/ (Source: Tractica)
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Deep Learning, GPUs, and HPC

Accelerator/CP Family System Share

* The ImageNet - Large Scale Visual Recognition
Challenge (ILSVRC)

@ Nvidia Kepler
@ Intel Xeon Phi
Nvidia Fermi
i @ ATI Radeon
@ Hybrid
— DL models like AlexNet, GooglLeNet, and VGG are used :

— 90% of the ImageNet teams used GPUs in 2014*
@® PEZY-SC

— A natural fit for DL due to the throughput-oriented nature

* Nvidia GPUs are the main driving force for faster
training of DL models

— Can use Nvidia Kepler and/or Pascal architecture ¢ b t h ea n O N
— DGX-1 (dedicated DL super-computer) N
— Titan series (lower precision but a good fit for DL) Spr / Toneor

* 63 /500 Top HPC systems use Nvidia GPUs — = >

www.top500.org |
B *https //blogs nvidia. com/blog/2014/09/07/|magenet/
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. Before CUDA 4.0, lack of a common memory
registration mechanism
—  Each device has to pin the host memory it will use

—  Many operating systems do not allow multiple devices
to register the same memory pages

—  Previous solution: Use different buffer for each device
and copy data

. After CUDA 4.0, both devices register a common

InfiniBand
InfiniBand

host buffer Before CUDA 4.0 After CUDA 4.0
—  GPU copies data to this buffer, and the network
adapter can directly read from this buffer (or vice-
versa) System
— Note that GPU-Direct does not allow you to bypass Memo
host memory
. After CUDA 5.0 (GDR), network adapter can directly

read/write data from/to GPU device memory
— Avoids copies through the host
—  Fastest possible communication between GPU and IB

HCA
—  Allows for better asynchronous communication InfiniBand
After CUDA 5.0
T - H - E
OHIO https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/
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NCCL Communication Library

e Collective Communication with a caveat!

GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

GPU buffer exchange
Dense Multi-GPU systems

(Cray CS-Storm, DGX-1) °'°a°°°“
MPI-like — but not MPI standard compliant

 NCCL (pronounced Nickel)

OHIO
o[

Open-source Comm. Library by Nvidia

Topology-aware, ring-based (linear) collective
communication library for GPUs

Divide bigger buffers to smaller chunks

Good performance for large messages

* Kernel-based threaded copy (Warp-level Parallel)
instead of cudaMemcpy

https://devblogs.nvidia.com/parallelforall/fast-multi-gpu-collectives-nccl/
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Research Challenges: Overview

 What are the new design challenges brought forward by
modern Deep Learning (DL) frameworks?

* How can we design efficient and scalable communication of
very large GPU buffers for upcoming multi-GPU nodes?

* Can we exploit a GPU-only single-node communication library
like NCCL to scale out on multi-GPU nodes of next-generation
clusters?
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Research Challenges: Details

*  What are the new requirements brought forward for
MPI_Bcast by modern DL frameworks?

100 ,
1. Very Large Buffer Sizes — Order of Megabytes GoggLeNet o ®
2. Broadcast of model parameters before each iteration % g0l o vGG_11 V6G_19 |
3. GPU-only buffers in most cases S NiN Alextiet
* Arethere libraries that can improve collective f 2ol |
communication performance for GPU buffers? §
— Yes, NCCL Library — a6
*  What are the issues in using just NCCL? %
— Single Process — Multiple Threads => Single node only g 501 |
*  Can MPI runtimes take advantage of CUDA- -
Awareness and NCCL in tandem? 5 , , . . , , 1
. . e . 0 100 200 300 400 500 600 700 800
— Yes, hierarchical communication in MPI runtimes can MB .
. of parameters in model
be exploited to scale out
T - H - E
OHIO http://arxiv.org/abs/1511.00175
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Design Space for Broadcast

 CUDA-Aware MPI provides excellent
performance for small and medium

message sizes 4
Proposed
* NCCL has overhead for small i Designs
messages but provides excellent 8 c
performance for large messages -
£5 CUDA-
. . Aware
* Can we have designs that provide MPI
good performance for internode
communication and internode >
scalability? Inter-node
Scalability
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Proposed Designh: Overview

. . 7T~
* We design and implement MPI_Bcast y, ~ _ Internode Comm. (Knomial)
— Augment different MPI_Bcast algorithms i’ S
— Exploit hierarchical designs for scalable inter-node l S
communication 1 @ \\
— In tandem, efficiently exploit NCCL for intra-node \ I
communication. ‘o o
— Using NCCL for the appropriate message range to get \ J7N\>- d
optimized performance for large messages \},' /l "~
— Exploit tuning to provide overall best performance ST~ - )
for all message sizes I Intranode Comm. | cpu
« Study and analyze the benefits of the proposed + (NCCLRing)
designs through a comprehensive performance [ bLX
evaluation using a micro-benchmark and a |

popular DL framework called CNTK.
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Proposed Design: Details

1. Communicator Creation (MPI_Init time)
— NCCL Communicators inside MPI Communicators

2. Communicator Caching (Successive Calls)

— Do not create the communicators if we have them available =>
Creation is expensive!

3. First, exploit internode broadcast to exchange b/w nodes

4. Then, use ncclBcast for intranode GPUs where it performs
better than existing intranode broadcast

5. Cleanup communicators (Some minor details)

T - H - E
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MVAPICH Communicator Creation/Caching

1. Create a NCCL communicator on
the first MP1_Bcast call

ncclCommiInitRank Hierarchical Communicators

(&nccel _comm, (MPI Level)
my_local_size,
Intranode

nccl commld, ‘
. Communicator
my_local_id); Internode
. o (MPI) .
2. Communicator creation is Communicator

expensive! (MPI)
- Save it for successive MPI_Bcast

calls
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MVAPICH NCCL Broadcast

 MPI applications can use nccl<Collective>() style
functions with a CUDA stream argument

° nccchast() 9 ncclResult_t

ncclBcast (voidx buffer,
int count,
ncclDataType_t datatype,
int root,
ncclComm_t comm,
cudaStream_t stream) ;
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Hierarchical Communication

3. Hierarchical Design

— Inter-node communication

* Wide array of algorithms have been proposed and used
— Binomial Tree
— Knomial Tree
— Scatter-Ring Allgather
— Scatter-RecursiveDoubling Allgather

e STG-COLL: Staged collectives — Copies between Device and Host buffers

 GDR-COLL: GPUDirectRDMA (GDR) collectives — Direct communication using
Device buffers

— Intra-node communication
e STG-COLL: Can use shared-memory communication when buffers are on the host
* NCCL: (ring-based) communication for GPU buffers

T - H - E
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Internode: STG-COLL and GDR-COLL

* STG-COLL:

Exploit the pipelined staging
support via the Host memory

MPI Rank O

* GDR-COLL:

OHIO
o[

MPI Rank 1

Use GPUDirect RDMA (GDR) o [ B
in the correct fashion avoiding e N
the P2P bottleneck Host D»-»I?I»-»D
Use CUDA IPC where

appropriate STG-COLL: Copies between Host and GPU

https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/
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Intranode: STG-COLL or NCCL

* STG-COLL:

— When the buffer is copied to the Host, shared memory collectives
can be used directly

* Proposed (NCCL):

— Sort of GDR-COLL — because we operate on the GPU buffers
directly.

— No copies between Host and GPU

— STG-COLL is slow for large because of copying overhead

— NCCL is throughput-oriented so it works much better
* No copies are involved so lesser overhead
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MVAPICH  The Actual MPI_Bcast Operation

4. Making the actual
MPI_Bcast call

— Call the implementation’s

MPI_Bcast (buffer, comm) li]l

internal functions Internal-Bcast Implementation
— Perform the internode internode_bcast (buffer, intercomm)
phase
— Perform the intranode intranode_bcast (buffer, intracomm)
phase

5. Cleanup at MPI_Finalize

ncclBcast (buffer, ncclComm)
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Overview of MVAPICH?2 Project

. High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE
- MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002
— MVAPICH2-X (MPI + PGAS), Available since 2011
— Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
— Support for Virtualization (MVAPICH2-Virt), Available since 2015
— Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
- Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
- Used by more than 2,675 organizations in 83 countries
— More than 391,000 (> 0.39 million) downloads from the OSU site directly

W\ / ; \
- Empowering many TOP500 clusters (Jun ‘16 ranking) 77 - 15 /’/" ’/ \\ &

. 12t ranked 519,640-core cluster (Stampede) at TACC e
. h N i —r ]
15t ranked 185,344-core cluster (Pleiades) at NASA "///v ,/ / !{ .\ _. & \ \‘ \ b"'\

. 31st ranked 76,032-core cluster (Tsubame 2.5) at Tokyo Institute of Technology and many others
- Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

- http://mvapich.cse.ohio-state.edu

. Empowering Top500 systems for over a decade
— System-X from Virginia Tech (3™ in Nov 2003, 2,200 processors, 12.25 TFlops) ->
— Stampede at TACC (12t in Jun’16, 462,462 cores, 5.168 Plops)

OHIO
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Experimental Setup

* We have performed all experiments on a Cray CS-Storm based GPU cluster
called KESCH located at the Swiss National Supercomputing Center

 Multi-GPU dense cluster: 12 hybrid nodes, each node contains 8 NVIDIA K-80
GK210GL GPUs

4 K-80 cards are connected per socket
16 CUDA devices (or GPUs) in one node
e Dual-socket Intel Xeon CPUs

* Connect-IB FDR Interconnect
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Performance Evaluation

* Micro-benchmark: Used osu_bcast from the OSU
Microbenchmarks (OMB) suite

e Application: Microsoft CNTK

— CUDA-Aware version called CA-CNTK*
— Uses MPI_Bcast on large GPU buffers

* Dip Sankar Banerjee, Khaled Hamidouche and Dhabaleswar Panda; Re-designing CNTK Deep Learning
Framework on Modern GPU Enabled Clusters; to be presented at 8th IEEE International Conference on

bﬁld Cloud Computing Technology and Science (CloudCom), Luxembourg 12-15 December 2016
- UNIVERSITY EuroMPI 2016 20




Latency (ms)

Current State:

NCCL vs. MV2-GDR (8 and 16 GPUs)

7000 - : 250000
160 - NCCL-8proc NCCL-8proc NCCL-8proc
140 - NCCL-16proc —¥— 6000 - NcCL-16proc —¥— ’ 200000 . NCCLr16proc —X—
120 L MV2-GDR-8proc —>¢— 5000 - MV2-GDR-8proc —»%— MV2-GDR-8proc —%—
MV2-GDR-16proc —H— MV2-GDR-16proc —H— o MV2-GDR-16proc —H—
100 4000 - £ 150000 - 4
80 g
20NN - ]
60 . § 100000 -
2.2x Degradation (on average) o
40
50000 -
20 1000 +
0 x> | i 0 1 ] i ] 0 I i i
2 8 32 128 512 2K 8K 32K 128K 256K 512K M 2M 4M 8M 16M 32M 64M 128M 256M
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)
For small messages (up to 64K), NCCL * For medium and large messages, the trend

suffers up to 2.2x degradation for both 8
and 16 GPU cases while MV2-GDR has .
excellent performance

OHIO
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is reversed!

NCCL performs much better and MV2-GDR
suffers up to 2.2x degradation for both 8
and 16 GPU cases
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Comparison of MV2-GDR, MV2-
GDR-Opt, and NCCL: 16 GPUs

MVAPICH

160 - 7000 - 250000 -

140 I NCCL —O— ‘ 5000 NCCL —6— NCCL —6—

120  MV2-GDR-Opt —X— | | MV2-GDR-Opt —%— 200000 FMV2-GDR-Opt —»%—
o MV2-GDR —H&— [ 5000~ Mv2-GDR - 3.25x MV2-GDR —=—
> 80L o Neeeoao J Improvement I
5 : 3000 - g ‘ ‘ ‘ mprovement
% 60 100000 - P
-

40 § 2000

54 50000
20 1000
0 4 7aS | 0 | | | 0 | | |
2 8 32 128 512 2K 8K 32K 128K 256K 512K M 2M 4M 8M 16M 32M 64M 128M 256M
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

* The proposed design (MV2-GDR-Opt) performs as good as
MV2-GDR for small messages (up to 128K),
* For medium and large messages, MV2-GDR-Opt provides up to
OHIO 4x improvement over MV2-GDR

EuroMPI 2016
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Comparison of MV2-GDR, MV2-

GDR-Opt, and NCCL: 64 GPUs

1

600 - « - 10000 | | 350000

MV2-GDR-Opt —>¢— 9000 ~MV2-GDR-Nnt ——¢— /ZI 300000 - MV2-GDR- Opt —K—
200 yv2-GDR —B— 8000 - Mv; 2X N /ZI
w 7000 F 250000 - 2 ZX
E 6000 |- Improvement 200000 -
> Improvement
S 150000
T
- 100000
50000
2 ¢ OS | L
2 8 32 128 512 2K 8K 32K 128K 256K 512K 1M 2M 4M 8M 16M 32M 64M 128M 256M
Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

* MV2-GDR-Opt) performs as good as MV2-GDR for small and medium
messages (up to 2M)

* For large messages, MV2-GDR-Opt provides up to 2.2x improvement

T-H-E over MV2-GDR
Q)51(@;

UNIVERSITY EuroMPI 2016



Application Performance:

Microsoft CNTK (64 GPUs)

* Microsoft CNTK is a popular
and efficient DL framework 30

MV2 GDR _
25 -MV2-GDR-Opt H——

* CA-CNTK is a CUDA-Aware
version developed at OSU

15 47% 37%
* Proposed Broadcast € 10r
provides up to 47 percent 5|
improvement in Training
' 0

time for the VGG network

T - H - E
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Conclusion

Exponential growth in GPU-based Deep Learning frameworks that bring new
requirements for MPI runtimes

We proposed and implemented an efficient, scalable, and hierarchical design for
MPI_Bcast to support DL frameworks.

Proposed Designs provide
— Efficient scale out up to 64 GPUs

— Upto47% improvement in training time for Microsoft CNTK framework

Fundamental work that identifies challenges and opportunities for MPI runtimes that
deal with next-generation DL frameworks and possibly HPDA applications

Plan to make this work publicly available through a future MVAPICH2-GDR release
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Future Work

* Exploit Optimizations for Dense GPU nodes with
upcoming NVLink

 Towards Higher Performance (lower latency)
and Scalability (> 256 GPUs)

 Evaluation with other DL frameworks

T H - E
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Thank You!

Ammar Ahmad Awan, Khaled Hamidouche, Akshay Venkatesh,
and Dhabaleswar K. Panda

{awan.10, hamidouche.2, venkatesh.19, panda.2} @osu.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page
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